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Abstract

Detecting Targeted Malicious Email through Supervised Classification of

Persistent Threat and Recipient Oriented Features

Targeted email attacks to enable computer network exploitation have become

more prevalent, more insidious, and more widely documented in recent years. Beyond

nuisance spam or phishing designed to trick users into revealing personal information,

targeted malicious email (TME) facilitates computer network exploitation and the

gathering of sensitive information from targeted networks. These targeted email attacks

are not singular unrelated events, instead they are coordinated and persistent attack

campaigns that can span years. This dissertation surveys and categorizes existing email

filtering techniques, proposes and implements new methods for detecting targeted

malicious email and compares these newly developed techniques to traditional detection

methods. Current research and commercial methods for detecting illegitimate email

are limited to addressing Internet scale email abuse, such as spam, but not focused

on addressing targeted malicious emails. Furthermore, conventional tools such as

anti-virus are vulnerability focused examining only the binary code of an email but

ignoring all relevant contextual metadata.

This study first documents the existence of TME and characterizes it as a form of

malicious email attack different than spam, phishing and other conventional illegitimate

email. The quantitative research is conducted by analyzing email data from a large

Fortune 500 company that has been subjected to these targeted emails. Persistent

threat features, such as threat actor locale and weaponization tools, along with

recipient oriented features, such as reputation and role, are leveraged with supervised

data classification algorithms to demonstrate new techniques for detection of targeted

malicious email. The specific tools, techniques, procedures, and infrastructure that a

threat actor uses characterize the level and capability of a threat; the recipient’s role

and repeated targeting speak to the intent of the threat. Both sets of features are used

in a random forest classifier to separate targeted malicious email from non-targeted
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malicious email. Performance of this data classifier is measured and compared to

conventional email filtering techniques to demonstrate the added benefit of including

these features. Performance evaluations are focused on false negative reduction since

the cost of missing a targeted malicious email is far greater than the cost of mistakenly

flagging a legitimate email as malicious.

Several findings are made in this study. First, targeted malicious email demonstrates

association to persistent threat features as compared to non-targeted malicious email

that does not. Second, targeted malicious email demonstrates association to recipient

oriented features as compared to non-targeted malicious email that does not. Finally,

detection of targeted malicious email using persistent threat and recipient oriented

features results in significantly fewer false negatives than detection of targeted malicious

email using conventional email filtering techniques. This improvement in false negative

rates comes with acceptable false positive rates.

Future research can expand upon the features introduced in this study. For example,

additional persistent threat features can be harvested from file level metadata (e.g.

author names, document path locations) and additional recipient oriented features

can be incorporated from organization databases. In this study, a binary outcome

is defined: emails are either targeted malicious or non-targeted malicious. Future

work can explore multi-class outcomes that pair specific threat actor campaigns and

targeted recipients.
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Chapter 1: Introduction

Email has long been an Internet ‘killer application’ used by individuals, businesses,

governments and other organizations for the purposes of communicating, sharing and

distributing information. Basic email shares a common design flaw with postal mail:

the sender is not necessarily authenticated and can be falsified in a message sent

to a recipient. However, a fundamental difference is that there is a cost associated

with sending postal mail while the marginal cost of sending magnitudes more email is

virtually zero. Email has a near zero incremental cost when sending greater volumes

of email resulting in illegitimate email dominating the vast majority of the Internet’s

email traffic (MAAWG, 2008).

There is a range of illegitimate email that corresponds to a spectrum of capabilities

and intentions behind the threat actors responsible for sending those emails. Certain

actors, such as those associated with spam, will use email to send mass unsolicited

advertisements to persuade individuals to purchase products that will generate revenue.

Other actors, such as those behind phishing, will use email as a means to steal personal

information and co-opt a victim’s identity. This identity theft allows an actor to open

a line of credit, make a string of purchases or empty a bank account. Still other

actors will use email as a vehicle to gain access to computer networks with sensitive

information or to disrupt computer network operations.

Since as early as email made its Internet debut, so did an entire industry that has

been focused on methods to detect and prevent illegitimate email from arriving into a

user’s inbox. There is a wealth of literature in the area of detecting unwanted emails

with approaches ranging from simple rule-based filtering techniques to complicated

machine learning algorithms. Numerous factors need to be considered with an email

filtering implementation including impact to the user, false positive and false negative

ratios, performance, longevity and applicability across a broad base of users. Most

implementations of email filtering are focused on addressing Internet scale email abuse

such as spam and phishing, tradecraft typically associated with profit motivated

actors such as criminals. However, there is very little research on filtering methods

1
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applicable to targeted malicious email sometimes associated with higher-order threats

such as national governments or others who do not solely have immediate financial

motivations.

1.1 Statement of the Problem

Several articles, industry reports and congressional testimonies document the existence

of targeted malicious email (TME) sent by malicious threat actors not necessarily

motivated by profit alone. These malicious emails have been targeted at company

executives, government personnel and other individuals with access to sensitive in-

formation useful by an opposing party to advance a cause. Current research and

commercial methods for detecting illegitimate email are limited to addressing Internet

scale email abuse such as spam, none seek to address targeted malicious emails.

For organizations targeted by these emails, detection is critically important since

these emails can enable the installation of malicious software on the targeted user’s

computer system. This malicious software can contain a backdoor that allows a

malicious threat actor to gain entrance to an organization’s network and its sensitive

information. Whereas conventional unwanted email, such as spam, is sent in bulk to

a large number of people on the Internet, TME is sent to very specific individuals.

The techniques that malicious threat actors use to craft and send these targeted

emails are different from the techniques used by spammers. Furthermore, since the

targeted emails are sent to specific individuals, the characteristics of the recipient

are relevant whereas with spam, they are less relevant. This dissertation exploits the

differences between spam and TME by capturing features of TME and TME recipients

and incorporating them into a decision classifier. The classifier is an algorithm that

categorizes a given email as either TME or non targeted malicious email (NTME).

This categorization allows an organization to decide whether to accept or reject the

email coming into their network environment.

This dissertation surveys and categorizes existing email filtering techniques, pro-

poses and implements new methods for detecting targeted malicious email and com-

pares these newly developed techniques to conventional detection and prevention
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methods. This dissertation answers these key questions:

1. What are the various email filtering techniques currently available?

2. Is there a separate class of email, targeted malicious email (TME), that is

different than spam or phishing?

3. How do current filtering techniques address the spectrum of threat actors’

capabilities and intentions behind illegitimate email?

4. How can the inclusion of persistent threat features improve email filtering over

currently available techniques?

5. How can the inclusion of recipient oriented features improve email filtering over

currently available techniques?

1.2 Outline of Dissertation

This dissertation is organized into six chapters. Chapter one introduces the problem

and relevant background. Chapter two provides a review of current literature which

covers current techniques in the area of email filtering. Chapter three outlines the

research goals and hypotheses. Chapter four proposes the detailed research method

and approach, including all of the statistical tests used in this study. Chapter five

covers all of the results of the experiments described in this study. Chapter six

summarizes all of the findings and provides recommendations for additional areas of

study.

1.3 Background

There are different classes of malicious threat actors each with different intent and

capability that a network defender might encounter. Conventional computer network

attacks involve exploitation of network-based listening services such as a web server,

whereas targeted attacks often leverage social engineering through vehicles such as

email to enhance attack effectiveness. Email is an effective attack technique given
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that nearly all organizations allow email to enter their network. Threat actors need

not expend resources to defeat advanced firewall systems, they can instead leverage

an ingress avenue already authorized in most networks. Additionally, these threat

actors leverage the Hyper-Text Transfer Protocol (HTTP), typically used to browse

the Internet, for Command and Control (C2) and to remove data from a network.

In June and July 2005, the U.K. National Infrastructure Security Co-ordination

Centre (NISCC) and the U.S. Computer Emergency Response Team (US-CERT)

issued technical alert bulletins describing targeted trojan email attacks leveraging

social engineering to exfiltrate sensitive information. The attacks were specifically

crafted for recipients with subject lines and email content relevant to the recipient to

increase the appearance of legitimacy. The trojans, once installed on a compromised

system, connect outbound to threat actors’ servers using commonly available outbound

ports such as port 80 (typically used for HTTP). Perhaps most troubling is that the

targeted email attacks evaded conventional anti-virus and email filtering capabilities

(UK-NISCC, 2005; US-CERT, 2005).

In November 2005, iDefense revealed additional information on these targeted

email attacks and reported that some of the targeted emails were destined for mili-

tary personnel and leveraged trojaned Microsoft Word document attachments. The

documents were relevant to the recipient and the email was “from” someone the

recipient trusted with content in the email relevant to work being performed by the

target recipient (iDefense, 2005). This level of targeting and sophistication suggest a

patient adversary with the resources to reconnoiter a target environment and craft

emails relevant to the recipients. Clearly, this sort of advanced attack can not be

performed on an Internet-wide scale and is only used by a determined adversary

intent on gaining access to very specific information. Jakobsson (2005) establishes

“context-aware phishing” which is an email based attack with information in the email

relevant to the recipient. However, Jakobsson’s examples suggest use by a common

class of adversary, a more traditional criminal actor motivated by money.

Several testimonies to the U.S. Congress and public U.S. government documents

characterize the nature of targeted email attacks and respective implications for
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national security. Before the U.S. House Armed Services Committee Subcommittee

on Terrorism, Unconventional Threats and Capabilities, James Andrew Lewis of the

Center for Strategic and International Studies testified that attacks occurred against

various government agencies in 2007 including the Department of Defense, State

Department and Commerce Department where information collection was the intent

of the malicious actors. Lewis also discussed the capability and intent of national

government level adversaries such as China and Russia who have the resources,

experience and skill to wage cyber warfare against the United States (Lewis, 2008). In

testimony to the U.S. House Permanent Select Committee on Intelligence, Paul Kurtz

described the extent to which government and private sector networks have been

targeted and intellectual property stolen by both state and non-state actors (Kurtz,

2008). With even more specificity about the nature of computer network operations

emanating from China, the 2008 and 2009 reports to Congress of the U.S.-China

Economic and Security Review Commission summarizes open source reporting of

targeted attacks against U.S. military, government and contractor systems. Again,

threat actors were motivated by a desire to collect sensitive information (U.S.-China

Economic and Security Review Commission, 2008, 2009). Additional corroboration

is provided in the 2008 and 2009 Annual Report to Congress by the Office of the

Secretary of Defense on the Military Power of the People’s Republic of China (U.S.

Department of Defense, 2008, 2009). With very specific details of a particular targeted

email attack, a March 2008 US-CERT alert bulletin describes a targeted email attack

that may have been directed at US government employees and defense contractors

(US-CERT, 2008). Finally, in a report prepared for the U.S.-China Economic and

Security Review Commission, Krekel (2009) profiles an advanced cyber intrusion with

extensive detail including documenting the initial attack vector, targeted malicious

email.

Numerous open source reports and industry based work also document the existence

of targeted attacks that sometimes use email as a social engineering attack vector.

Waterman (2008) describes malicious emails targeted at US think tanks that spoof the

email addresses of known colleagues with attachment names relevant to the recipient.
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Extensive reporting by BusinessWeek in 2008 also reveals targeted email attacks

designed to extract sensitive information. Grow et al. (2008) reports an example of

a targeted email sent to a Booz Allen Hamilton Vice President that spoofs a known

email contact with highly relevant email content to the recipient (see Figure 1.1). The

payload of the email was a malicious trojan designed to capture and log keystrokes,

according to the report. Grow et al. also describe numerous other examples of targeted

email attacks using malicious Microsoft Word documents, PowerPoint presentations

and Access database files. Epstein and Elgin (2008) of BusinessWeek describe targeted

Figure 1.1: Screenshot of a targeted malicious email
directed at Booz Allen Hamilton executives (Grow et al.,

2008)

emails that fooled individuals at NASA and facilitated unauthorized access to its

networks. Barnes (2008) documents another example of targeted attacks against

US military networks in US Central Command reportedly with traces to Russian
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involvement. Targeted email attacks, with malicious Adobe Portable Document

Format (PDF) attachments, have also been levied against foreign correspondents

based in China (Villeneuve and Walton, 2009). A fairly comprehensive summary of

open source reporting on advanced attacks against the US military complex can be

found in Fritz (2008).

Industry and vendor based work has also uncovered evidence of targeted attacks by

advanced threats. Pro-Tibet groups reported being targeted by malicious email sent

by trusted sources containing information related to recent events in Tibet (Claburn,

2008). Anti-Virus vendor F-Secure provides screenshots and details of the malicious

code found in these Pro-Tibet targeted emails and notes that the attacks are advanced

and designed to evade detection tools (F-Secure, 2008). Other security vendors such

as MessageLabs also revealed the existence of targeted attacks, with detailed examples

of malicious email sent to Olympic athletes and national sporting organizations. Many

of these attacks leverage either malicious websites or malicious attachments in order

to provide unauthorized access to data or networks (MessageLabs, 2007a,b,c, 2008a,

2009). In February 2010, iSec Partners released a report on the current nature of

advanced targeted attacks. Their findings noted that current approaches such as

Anti-Virus and patching are not sufficient, end users are directly targeted, and threat

actors are after sensitive intellectual property or software source code (Stamos, 2010).

Through all of these targeted email attack examples, the capabilities and intentions

of the threat actors differ from traditional criminals primarily interested in immediate

financial gain. For these advanced persistent threats, acquisition of valuable data is

the real intention; while many victims of illegitimate email have money, only certain

organizations have valuable information, the type of information that yields long term

strategic advantage. The nature of these targeted malicious emails and the capabilities

and intentions of the advanced threat actors behind them can be summarized as

follows:

1. Email as a form of social engineering is a popular vehicle for conducting targeted

attacks.
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2. Email based attacks may evade conventional anti-virus, anti-spam and anti-

phishing detection mechanisms.

3. Targeted emails are usually crafted such that they are relevant to the recipient -

email addresses, subject lines and content are tailored to increase the interest of

the intended target enticing them to open the email.

4. Targeted email attacks might be low in volume intended to evade detection.

5. Certain classes of users, such as executives or military personnel, appear to be

targeted together in waves of targeted email attacks.

6. Threat actors may repurpose previously sent emails and append them with a

malicious attachment for a new attack.

7. Targeted emails use both malicious attachments as well as malicious web links

in emails to facilitate unauthorized access to networks and data.

8. Often, the goal behind targeted email attack is acquisition of sensitive informa-

tion.

In this study, the term “Targeted Malicious Email”, abbreviated by “TME”, will

be used to describe advanced email attacks levied at certain recipients in an attempt to

gain access to sensitive information. All other email will be referred to as “Non-targeted

Malicious Email”, abbreviated by “NTME”. Figure 1.2 proposes an email taxonomy

to put different types of commonly used email types into context. Email attacks

can be evaluated across two dimensions: the first, motivation, characterizes a threat

actor’s objective; the second, distribution, describes the level of targeting. Motivation

is important to understand because it defines the level of recipient engagement needed.

If the threat actor’s motivation is immediate financial gain, the email attack only needs

to trick the user into providing some information (e.g. bank account information)

that can be used immediately for financial gain. If the threat actor’s motivation is the

acquisition of sensitive data, the threat actor is likely going to need a foothold on the
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Figure 1.2: Email taxonomy

victim’s machine. This foothold will likely require the execution of some malicious

software on the target system.

Because of the unique nature of targeted malicious email, newer detection methods

are needed. Conventional methods designed to detect traditional actors may not

be well suited for actors with different capabilities and intentions. Chapter two will

survey the landscape of current email filtering methods and identify shortcomings of

these approaches with respect to targeted malicious email.

1.4 Purpose

The purpose of this research is three-fold: a) to characterize and document the

existence of TME as different from spam or phishing, b) to demonstrate a correlation

between persistent threat and recipient oriented features and targeted malicious email,

and c) to develop a classifier that is able to detect targeted malicious email better

than conventional email filtering techniques such as anti-spam or anti-virus.
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1.5 Significance

The significance of this research is to create an email detection algorithm specifically

tuned to uncover TME. TME can result in threat actor presence and exploitation

activity on an organization’s network leading to significant data loss. Current email

filtering techniques such as anti-spam and anti-virus are ill-suited to detect this

different class of email. The models developed in this study are able to better detect

TME than conventional email filtering techniques.

1.6 Scope and Limitations

This research is scoped to study targeted malicious emails that have been received by

one large organization during a finite time period. These targeted malicious emails

are used to develop a classifier that is able to better detect these malicious emails

than conventional email filtering techniques.

Detection of malicious email can use many features of email and numerous classi-

fication algorithms can be used on these features. The classifiers developed in this

study do not have any features related to content of attachment; aside from basic

attachment information, the attachments are ignored. This is very different from

conventional anti-virus where attachment content forms the basis for malicious code

detection. Incorporating features related to file attachment content is an area for

future study. Additionally, only one classification algorithm is refined in this study.

There are numerous classification algorithms that can be applied to the collected

data but only one was necessary to demonstrate the improvement over conventional

email filtering techniques. Other algorithms may yield even better results but that is

another area for future study.
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Chapter 2: Literature Review

This chapter will provide a primer on email format, a summary of the threat actor

spectrum and the threat kill chain, a review of current email filtering techniques,

and finally a summary of the weaknesses with current email filtering approaches.

When considering the spectrum of attacks described in chapter one, it is important to

understand how current techniques may fall short of defending against advanced threat

actors. Current email filtering techniques can be broadly categorized into five classes:

authentication, contextual, characterization, reputation and resource consumption.

Many of the techniques incorporate elements from multiple classes.

2.1 Email format primer

To understand email filtering techniques, a working knowledge of email structure and

format is required. The structure of email is defined in RFC 5322 (Resnick, 2008).

Like traditional postal mail, there is an envelope and a letter. Users typically never

see the envelope because email systems throw away the envelope just before delivering

the letter (e.g. the email message) to the user. An example of an envelope is shown in

Figure 2.1. Additional envelope recipients would be defined with additional RCPT

EHLO col0-omc4-s17.col0.hotmail.com
MAIL From:<rohanamin@live.com> SIZE=26103 BODY=8BITMIME
RCPT To:<rohan@rohanamin.com>

Figure 2.1: An example of an email envelope

To: lines. The letter consists of two major parts, the header and the body. The body

can include text and also attachments. Figure 2.2 shows an example email including

header and body with attachments. Notable features of the email are as follows:

1. Delivered-To - The email address the message will be delivered to.
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Delivered-To: rohan@rohanamin.com
Received: by 10.150.206.13 with SMTP id d13cs119935ybg;
        Sat, 6 Mar 2010 14:55:14 -0800 (PST)
Received: by 10.151.58.8 with SMTP id l8mr904856ybk.59.1267916114523;
        Sat, 06 Mar 2010 14:55:14 -0800 (PST)
Return-Path: <rohanamin@live.com>
Received: from col0-omc4-s17.col0.hotmail.com (col0-omc4-s17.col0.hotmail.com [65.55.34.219])
        by mx.google.com with ESMTP id 38si7218005ywh.70.2010.03.06.14.55.13;
        Sat, 06 Mar 2010 14:55:14 -0800 (PST)
Received-SPF: pass (google.com: domain of rohanamin@live.com designates 65.55.34.219 as 
permitted sender) client-ip=65.55.34.219;
Authentication-Results: mx.google.com; spf=pass (google.com: domain of rohanamin@live.com 
designates 65.55.34.219 as permitted sender) smtp.mail=rohanamin@live.com
Received: from COL109-W36 ([65.55.34.201]) by col0-omc4-s17.col0.hotmail.com with Microsoft 
SMTPSVC(6.0.3790.3959);

 Sat, 6 Mar 2010 14:53:13 -0800
Message-ID: <COL109-W36BCC9221F3B110DCC6153D2370@phx.gbl>
Return-Path: rohanamin@live.com
Content-Type: multipart/mixed;

boundary="_53be5617-f8b0-4615-9a14-5ea2feef7c55_"
X-Originating-IP: [127.0.0.1]
From: Rohan Amin <rohanamin@live.com>
To: "Rohan Amin" <rohan@rohanamin.com>
Subject: Example Email
Date: Sat, 6 Mar 2010 17:53:12 -0500
Importance: Normal
MIME-Version: 1.0
X-OriginalArrivalTime: 06 Mar 2010 22:53:13.0280 (UTC) FILETIME=[CD16CC00:01CABD7F]

--_53be5617-f8b0-4615-9a14-5ea2feef7c55_
Content-Type: text/plain; charset="Windows-1252"
Content-Transfer-Encoding: quoted-printable

This is an example email with attachment.
      =20
_________________________________________________________________
Hotmail: Trusted email with Microsoft=92s powerful SPAM protection.
http://clk.atdmt.com/GBL/go/201469226/direct/01/=

--_53be5617-f8b0-4615-9a14-5ea2feef7c55_
Content-Type: application/msword
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename="test.doc"

0M8R4KGxGuEAAAAAAAAAAAAAAAAAAAAAPgADAP7/CQAGAAAAAAAAAAAAAAABAAAAJgAAAAAAAAAA
AABSAGkA8/+zAFIADL0AAAAAAAAAAAwAVABhAGIAbABlACAATgBvAHIAbQBhAGwAAAAcABf2AwAA
NNYGAAEKA2wANNYGAAEFAwAAYfYDAAACAAsAAAAoAGsg9P/BACgAAA0AAAAAAAAAAAcATgBvACAA
TABpAHMAdAAAAAIADAAAAAAAUEsDBBQABgAIAAAAIQBLnfYYAAEAABwCAAATAAAAW0NvbnRlbnRf
...
hFUJv4FV7DOyOxZhFdeWCiI9JIyjdkSk9MncEuBvJejXoXX4w77LxomLFIoe+HTewJxXkdv8oBXj
JPNhuzSNq9j35QGkKEZ7XPngu9ytEP0MccDpzHDfocQJ99nd4DYdOiZNEkS/GQkdS2jVTgdOaPqq

--_53be5617-f8b0-4615-9a14-5ea2feef7c55_--

Figure 2.2: An example email

2. Received - Every email server that handles the message will add a Received line

entry which includes a time stamp.

3. Return-Path - The email address from which the message was sent.

4. Received-SPF - Sender Policy Framework (SPF) domain authentication results.

5. Message-ID - A unique number assigned by the sending mail server.

6. Content-Type - Defines the boundary string used to separate the Multipurpose

Internet Mail Extensions (MIME) parts of an email.
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7. X-Originating-IP - The Internet Protocol (IP) address of the sending client.

8. From - Set by the sender’s email program. From consists of a phrase and address

(the phrase is the string before the email address). This does not have to equal

the MAIL From line in the email envelope.

9. To - Set by the sender. To consists of a phrase and address. This does not

necessarily have to equal the RCPT To line in the email envelope. If there are

any Cc recipients they would appear in the RCPT To line in the email envelope.

Any Bcc recipients would not be shown but would be in the email envelope as

RCPT To recipients.

10. Subject - Set by the sender.

11. Date - Set by sender’s email program. It includes the local time zone of the

system used to send the email.

12. Content-Type - Defines the character set used by the email.

13. Content-Disposition - Includes some information about the attachment.

2.2 Threat actor spectrum and the threat kill chain

2.2.1 Threat actor spectrum

Computer and network systems are attacked today by a range of adversaries who vary

in capability and intent. Key to understanding the nature of Computer Network Attack

(CNA) and Computer Network Exploitation (CNE) activities are the motivations

behind classes of threat actors, also referred to as malicious actors, adversaries or

attackers (in the case of CNA). Simply put, different threat actors have different

motivations, different levels of sophistication and different levels of resources all

requiring an associated spectrum of effective defenses. This section summarizes some

relevant publicly available characterizations of threat actors.

In a 2001 statement to the Joint Economic Committee of the United States

Congress, Dr. Lawrence Gershwin, the U.S. National Intelligence Officer for Science
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and Technology, outlines five major categories of malicious actors who threaten

information systems in the United States: hackers, hacktivists, industrial spies and

organized crime groups, terrorists, and national governments. He describes hackers

as hobbyists without the tradecraft or motivation to pose a significant threat to

national-level infrastructure. Hacktivists, Dr. Gershwin describes, carry out their

activities for purposes of propaganda rather than to damage critical infrastructure but

they still pose a medium-level threat able to carry out a limited but still severe attack.

The next class of malicious actor, industrial spies and organized crime, also pose

a medium-level threat to the United States but are primarily motivated by money;

these criminals engage in targeted attacks to evade attention from law enforcement.

Traditional terrorists, according to Dr. Gershwin, pose little threat to information

systems since they will remain focused on more conventional attack methods such as

bombs. Finally, Dr. Gershwin characterizes the national government or nation-state

threat as the only class of malicious actor with the resources and time-horizon to cause

significant damage to critical infrastructure. A lengthy time-horizon allows threat

actors to wage persistent attack campaigns instead of singular attacks. He notes that

specialized tools are needed for targeted attack defense and that these tools differ

than those needed for defense against Internet wide exploitation (Gershwin, 2001).

A 2005 U.S. Government Accountability Office (GAO) report on the U.S. Depart-

ment of Homeland Security (DHS) role in cyber security, delineates a spectrum of

threats such as bot-network operators, criminal groups, foreign intelligence services,

hackers, insiders, spammers, phishers, malware authors, and terrorists. The report

describes that a few of these threats, such as foreign intelligence services, have the

capability to impact national-level interests. DHS assembled this threat landscape

using data from the Federal Bureau of Investigation, the Central Intelligence Agency

and Carnegie Mellon’s CERT/CC (U.S. Government Accountability Office, 2005).

Schudel and Wood (2008) focus on the cyber terrorist threat and note that a terrorist

threat is not as sophisticated as a national government but still has significant resources

to disrupt or degrade systems. Additionally, terrorist methods will be targeted and

terrorists will only expend the minimum amount of resources necessary to accomplish
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a mission, nothing more. These observations about this class of adversary imply that

from a defensive standpoint, network defenders need to look for different tradecraft

and methods of operation from a criminal who may operate on an Internet-wide scale

primarily for monetary gain.

Finally, in February 2008, United States Director of National Intelligence Michael

McConnell stated that, “nations, including Russia and China, have the technical

capabilities to target and disrupt elements of the US information infrastructure and

for intelligence collection. Nation states and criminals target our government and

private sector information networks to gain competitive advantage in the commercial

sector” (McConnell, 2008). McConnell additionally stated that different actors have

different capabilities and different intentions which means that the associated defenses

must differ and be based on the particular threat being opposed (McConnell, 2008).

2.2.2 Threat kill chain

The threat kill chain is the sequence of events that must occur for a threat to

successfully achieve its objective. Figure 2.3 depicts the threat kill chain from the

threat actor’s perspective assuming computer network exploitation is the goal (e.g.

acquisition of sensitive information). Different kill chains can be created depending

on specific threat actor objectives; for example an attack against data integrity would

have a different kill chain to model the threat actor’s process (Hutchins et al., 2010).

Recognizing that a human is behind a keyboard executing email-based exploitation

is key to exploring new methods for targeted malicious email detection. In cases

of persistent activity there may be an institutional infrastructure driving email-

based exploitation. New detection techniques can be developed by focusing on each

component of the threat kill chain. This kill chain decomposition allows defenders to

create detections based on the habits of individual threat actors and the processes

of institutions. Detection and prevention anywhere along the kill chain is a success

for defenders as long as the threat actor’s final goal is not achieved. In the following

threat kill chain decomposition the acquisition of sensitive information is considered

to be the threat’s intent with email being the primary exploitation vehicle. This
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Weaponization

Delivery

Exploit

Installation

C2

Actions on Intent

Through research threat actor identifies a indus-
try/organization(s) that might have desired sensi-
tive information.

Threat actor weaponizes and carefully socially engi-
neers an email, crafting it for recipients to increase
relevance.

Threat actor launches email attack, sending it to a
targeted set of recipients.

Recipient unknowingly activates attack payload.

Attack payload establishes a foothold onto a com-
puter system.

Command & Control is established between com-
promised system and threat actor.

Threat actor interacts with compromised system
and exfiltrates data.

Figure 2.3: Example email kill chain (Hutchins et al., 2010)
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study develops a framework for email analysis that can be used to automate detection

along the entire threat kill chain. Through this framework the tactics, techniques,

procedures and infrastructure behind threat actors can be decomposed and leveraged

for significant gains in detection capability. This study primarily focuses on features

that expose the reconnaissance, weaponization and delivery phases of the kill chain.

Reconnaissance

Threat actors gather as much information as possible to increase the likelihood of

success during the reconnaissance phase of the kill chain. Assuming the threat actor

has specific data collection tasking, he will need to understand where that information

is located, what organizations have it and who specifically in the organization has

access to it. To effectively target certain individuals using email, the threat actor will

need the email address of the recipient and context about the recipient to make the

email relevant. Careful planning during the reconnaissance phase will increase the

chances of success for a threat actor. A network defense team should pay attention

to details such as how Internet users access their organization’s website, the search

terms used to access their website and even language settings of web browsers being

used to access their website. This sort of analysis maps back to specific techniques

and infrastructure that threat actors employ.

Weaponization

The weaponization phase of the kill chain is when the threat actor creates and packages

an email weapon that will eventually be delivered to targeted recipients. Typically a

threat actor can weaponize an email through the use of a malicious attachment or

a web link to a malicious website. In the case of a malicious attachment, there is

typically the file container, the exploit and a backdoor. The file container could be a

Microsoft Word document or Adobe Portable Document Format (PDF) for example

with content that is relevant to the intended recipient targets. This file container

might contain author information, file path information or other information about the

host computer that was used to create the file. Inside the file container is typically an
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exploit for a vulnerability in that software package. Finally, the file container contains

a backdoor that will be installed on the recipient’s system and provide unauthorized

access for the threat actor. Internet searches for ‘trojan pdf creator’ turn up tools that

can be used to package a file container with exploit and backdoor. These tools may

leave signatures in the weaponized attachments that can be leveraged for detection

purposes. Another important point to consider is that the person who creates the

malicious payload may not be the same as the person who sends the malicious email.

Email senders might need to acquire these malicious components from a supply chain

of providers. This is analogous to an assassin who uses a gun and ultimately pulls the

trigger but gets bullets from a supplier. In the case of a link to a malicious website,

the threat actor needs to host malicious code on a website. The website can either be

under the complete control of the threat actor or could be on an existing legitimate

website that has been compromised. The latter approach typically results in a more

legitimate looking link being included in an email but also has a higher cost for the

threat actor to establish.

Delivery

Once the weaponization phase is complete, a threat actor needs to send an email

to a targeted set of recipients. There are a number of delivery elements to consider

including the email addresses and email content, tools used to send email, and the

distribution method.

When sending an email a threat actor can choose to either use legitimate or illegiti-

mate sender information. Since conventional email does not require any authentication

of the sender, threat actors generally opt to misrepresent their identity typically

through falsification of the sending From address in the email header. Threat actors

can impersonate another legitimate email sender or choose to completely falsify the

information with no intent to impersonate a recipient known legitimate sender. The

text of the From address consists of an optionally provided Full Name (e.g. John

Smith) and a required From email address (e.g. john.smith@example.com). If a threat

actor is trying to increase the probability of a recipient opening a malicious email, the
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From name and address might be chosen to be relevant to that particular recipient

(e.g. a known colleague, friend, or business). A threat actor can also opt to falsify

the sending system information. Normally, a sending system will add its identifying

information such as its host name or IP address to the email headers. If an email is

sent through a network of relays before arriving at its destination, relay systems that

adhere to standards will also append their identifying information to the email headers.

However, a threat actor can append a superfluous chain of email relays to a malicious

email to obscure the true system of origin. User visible content of an email is important

depending on the targeted recipients and intent of the threat actor. Both the Subject,

in the header of an email, and the actual email body are elements of user visible email

content. Email body content can either be blank, random, of generic relevance to the

recipient, or of specific relevance to the recipient. Blank or random content might be

completely irrelevant to a recipient resulting in the recipient immediately deleting

such an email. However, if a threat actor’s only intent is to build a dictionary of valid

recipients by analyzing invalid recipient error messages from receiving mail systems,

sending blank emails to a brute force generated list of email addresses might be the

most appropriate method. Furthermore if a threat actor’s intent is to confuse or

influence the calibration of a target email system’s filtering capability, an email with

random text might be an appropriate method. When not reconnoitering or calibrating,

a threat actor generally wants the malicious email to be opened which means the email

will have content of either generic or specific relevance to the recipient. If a threat

actor intends to send an email to a large population the content might consist of topics

relevant to a large audience such as current news, current events, or pop culture. If a

threat actor intends to send an email to a very specific and smaller population, the

content might be highly relevant aligning with the recipients’ affiliations, organization

or role. The combination of identity misrepresentation and crafted email content

can be very powerful for increasing the relevancy of a malicious email to a specific

recipient. Threat actors may maintain databases of recipients and those recipients

may be targeted multiple times. Different threat actors may have different databases

and as such some recipients may only be targeted by some threat actors and not by
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others.

Another important consideration from a detection perspective in the delivery

phase of the kill chain is the type of tools used to send the targeted malicious emails.

Typically users send email using software such as mutt1, Microsoft Outlook2, Mozilla

Thunderbird3, Foxmail4 or web-based services such as Google Gmail5, Microsoft

Hotmail6 or Yahoo! Mail7. A threat actor can certainly use traditional email software

to send malicious emails, however, these tools do not easily facilitate misrepresenting

one’s identity or distributing large amounts of email; after all, these applications

enforce some standards. Automated tools facilitate rapid generation and distribution

of emails sometimes customized per recipient. For example, a single email can be sent

individually to hundreds of email addresses instead of all email addresses being in

the To line of a single email. Furthermore, these automated tools can also customize

email content by including the recipient’s name at the beginning of an email or by

appending a unique string to the end of each email to hamper signature based email

detection algorithms. These email tools may also include traces of language settings

or character encodings used when the content was created. Locale information such

as time zones might also be included by the email tool. In summary, tools will leave a

footprint or signature in the email that can be used to identify usage of a particular

tool by a threat actor or information about the threat actor himself.

Once a threat actor has created an email and defined its recipients, he needs to

send the illegitimate email to the target(s). There are generally four ways a threat

actor can distribute an email: directly, through one or many relays, through a public

webmail provider, or through a large network of autonomous, compromised machines

(commonly known as a “botnet”). If the threat actor has his own email server, he

can choose to send his illegitimate email directly from his email server which will

connect to the recipients’ respective email servers. However, this approach will leave a

1mutt - http://www.mutt.org
2Microsoft Outlook - http://www.microsoft.com/outlook/
3Mozilla Thunderbird - http://www.mozilla.com/thunderbird/
4Foxmail - http://www.foxmail.com.cn/
5Gmail - http://gmail.google.com/
6Hotmail - http://www.hotmail.com
7Yahoo! Mail - http://mail.yahoo.com
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clean trail back to the threat actor and may also diminish in effectivity over time as

email filtering tools are updated with new known-bad servers. This approach might be

useful if a threat actor wants to send a small amount of email over a short period of

time. A second distribution vehicle involves one or many email relays on the Internet.

A threat actor can configure their email software to connect to an open relay on the

Internet that will send the email on his behalf. This will separate the threat actor

from the recipient’s email server but depending on the configuration used, the received

email headers will still show a chain of email relays used to send the email. This

might be enough obfuscation depending on the intent of the threat actor. A third

distribution vehicle involves a threat actor creating an account with a public webmail

provider such as Google Gmail. Sending an email this way can also obfuscate the

source of the threat actor; to the recipient, the message originates with the webmail

provider, not the threat actor. Some webmail providers, however, include the IP

address of the system that connected to it in the email headers that are visible to the

email recipient, some do not8. Tools are also available that facilitate mass creation of

webmail accounts for malicious use (MessageLabs, 2008b). A final distribution vehicle

for malicious email are large networks of autonomous, compromised machines known

as botnets. Botnets can consist of upwards of hundreds of thousands of compromised

systems worldwide which are in the control of a “botherder.” These botnets, among

other actions, can be directed to execute denial of service attacks against Internet

websites or send massive amounts of email around the world. Traded like commodities,

ownership or use of a botnet involves a cost to a threat actor but affords a measure of

obfuscation and scale unmatched by other distribution vehicles. Again, depending on

the specific intention of a threat actor, leveraging a botnet infrastructure may or may

not be the most appropriate malicious email distribution vehicle (Rajab et al., 2006).

All of these delivery elements can be leveraged for detection purposes. Institutions

engaging in systematic exploitation activities might have developed processes and

procedures that can be detected. Given the relative difficulty it is conceivable that the

8As of the publication date of this study, Hotmail and Yahoo include the originating client IP
address and Google Gmail does not
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skill level of individuals sending malicious email might be lower than those developing

weaponized packages. This skill level difference may result in more mistakes or more

discernible habits that can be detected.

Exploit

To successfully have the targeted recipient’s computer system perform a function

desired by a threat actor, there are two exploit methods a threat actor can leverage:

a threat actor triggered exploit, exploiting a vulnerability in the email software itself

or a recipient triggered exploit, requiring the user to open an attachment or click

on an Internet link. Threat actor triggered exploitation does not require the user to

take any action since a vulnerability in the email software itself allows for automatic

exploitation as long as the email software has not been fixed. There have been several

email software vulnerabilities enabling threat actor triggered exploitation but over

time they have been fixed by email software vendors Microsoft (2002); US-CERT

(2007); Mozilla (2008). Recipient triggered exploitation largely depends on a technique

known as social engineering, where a user is tricked or manipulated into taking an

action in the threat actor’s favor. User education and awareness is generally the only

solution to these types of social engineering based attacks. To actively engage an email

recipient, a threat actor can leverage either a malicious file attachment or Internet

link. Both can enable a threat actor to direct an unsuspecting user to a website for

selling a product, to download malicious software to compromise their system or to

a website to collect personal sensitive information. Depending on the threat actor’s

intentions and capabilities, there are a number of considerations that favor one active

exploitation technique over another. For example, manipulating a user to click on a

link in an email might require a threat actor to compromise a legitimate Internet web

site to install malicious code so a user believes they are going to a legitimate web site.

A victim triggered exploit might still exploit a vulnerability in client software (e.g. a

vulnerability with Microsoft Office software) but the exploit will not trigger unless the

user opens the malicious attachment.
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Installation

Once the malicious payload has been activated it will be installed on the recipient’s

system. The payload might get installed to certain folders on the system or it might

create unique system registry keys. The payload might employ different persistence

mechanisms such as execution via the system startup folder or through a startup

service. It is possible the payload might not seek persistence at all but only run

once on a recipient system. If an institutional threat actor is exploiting numerous

organizations, the payload installation might have organization specific configurations

to help effectively manage the compromised systems across different organizations.

All of the these factors can be considered for detection purposes since different threat

actors might have a preference for different approaches.

Command and Control (C2)

After malicious code is installed on a recipient system it typically communicates back

to the threat actor for purposes of command and control (C2). This C2 channel is

how the threat actor manipulates and controls the now compromised system. For

example, the threat actor might direct a system to search for and return certain files.

The C2 channel might use certain protocols, employ specific obfuscation techniques

or might be destined for certain IP addresses on the Internet. These features can be

associated with the particular backdoor used by a threat actor and can also describe

the infrastructure on the threat actor’s end. Additional persistent threat insight can

be gained from analyzing the Internet domain registry information for the domains

used by threat actors for C2 purposes.

Actions on Intent

Different threat actors may employ different techniques to achieve the final goals they

wish to achieve. For example if data exfiltration (removal) is the threat actor’s intent

there are different methods to package and remove data. One threat actor might opt

to exfiltrate files one at a time, another might opt to remove files in bulk using a
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compressed archive file. To actually transfer the files, some threat actors might use

traditional file transfer techniques such as File Transfer Protocol (FTP) and others

might obfuscate data removal within an obfuscated C2 channel. These behaviors can

be detected and used to provide a measure of threat actor attribution.

2.3 Current email filtering techniques

2.3.1 Authentication

Authentication based approaches to filtering email are designed to validate that an

email was sent using a valid path for the advertised sending domain name and that

the domain name is not being spoofed by a malicious actor. This method of filtering

typically occurs very early in the email transmission when a sending email server first

connects to a receiving email server. Authentication based filtering leads to a binary

response: email is either be accepted or rejected based on the authentication result.

Wong and Schlitt (2006) and Lyon and Wong (2006) describe two methods of

domain authentication called Sender Policy Framework (SPF) and Sender-ID. Both

rely on the sending system publishing valid email server records in the Domain Name

System (DNS). The receiving system is then able to verify that an email advertised as

coming from a particular domain actually came from email servers authorized to send

email on behalf of that domain. SPF and Sender-ID are very similar in approach and

differ in the fields they use on the receiving end for the lookup.

Crocker et al. (2005), Otis et al. (2005), Leslie et al. (2005) discuss the components

of Certified Server Validation (CSV) which is another authentication scheme leveraging

DNS for domain validation. However CSV differs in that it uses the domain name in

the Simple Mail Transfer Protocol (SMTP) HELO transaction. CSV first checks to

ensure the server sending IP address matches the IP address in DNS for the domain

used in the HELO transaction. Second, CSV verifies the reputation of that domain vs.

the domain name advertised in the email headers. This difference is important when

considering situations where individuals are sending email through a mail server where

the From address and the mail server may not match (e.g. a travelling user using a
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remote Internet Service Provider). This difference between CSV and SPF/Sender-ID

results in a different approach for handling spoofing. With the former, spoofing

controls need to be handled on the sending server side to ensure the server is only

sending email that it is supposed to send. With the latter, spoofing controls need to

be handled on the receiving server side to ensure that the sending IP address is valid

for the advertised From domain in the email headers.

Another authentication mechanism, DomainKeys, is described by Delaney (2007),

Allman et al. (2007) and Leiba and Fenton (2007). DomainKeys is different in that

it leverages a public/private key cryptographic solution where the sending email

server signs the email with a private key and the receiving email server validates the

signature by retrieving the public key for the From domain in the email headers via

DNS. This approach is similar to SPF/Sender-ID in that DomainKeys validates that a

particular email server is authorized to send email for a domain advertised in the From

email headers. DomainKeys differs from SPF/Sender-ID, however, because it does not

require the sending domain to maintain lists of authorized email servers for the domain.

The downside is that there is overhead associated with computing, maintaining and

distributing the private/public key pair needed for DomainKeys. Taylor (2006)

describes Google Mail’s (Gmail) approach to establishing sender reputation and it is

heavily based on both SPF and DomainKeys as complementary approaches because

each has its strengths and weaknesses.

Other authentication like approaches include the Occam protocol described by

Fleizach et al. (2007), the Single-Purpose Address (SPA) described by Ioannidis (2003)

and Trustworthy Email Addresses (TEA) described by Seigneur et al. (2004). The

Occam protocol works in real-time on a per-email basis where the receiving email

server asks the sending email server to validate that it sent a particular email based

on the email Message-ID field. SPA uses a cryptographic based email address which

encapsulates the policy in the email address itself. Not designed for person-to-person

interaction, someone looking to receive communication from a party at a later date

(e.g. online retailer) would generate a SPA and give that to the party for their explicit

use. The policy in the SPA defines an expiration date and authorized senders who are
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allowed to use the SPA. Enforcement of this policy is done by the receiver. TEA is a

challenge-response authentication scheme that uses hashes of previously exchanged

email between two email addresses to authenticate that a new received email is being

sent from the correct email server and not being spoofed.

All of these authentication approaches are designed to make sure that an email

being received is actually being sent by a system or person authorized to send an email

from the advertised email address. With respect to the threat spectrum described in

chapter one, all of these techniques are well suited to address malicious actors who

send large numbers of email spoofing various domains (e.g. spammers). A threat actor

could register a new domain, equip it with the appropriate authentication capabilities

and then send spam from that domain. However, Internet-wide real-time blocklists

would be quickly updated and tag email from this domain as illegitimate. Trying

to scale this sort of approach would introduce a non-trivial cost to the actor. These

authentication approaches can also be used to prevent a more advanced threat actor

from sending a targeted spoofed email. However, these techniques require all senders

and all receivers to implement them in order to realize the benefit of being able to

prevent targeted social engineering malicious email attacks. Furthermore, approaches

like SPF, Sender-ID and DomainKeys, which are the predominant email authentication

approaches in use today, only validate at a domain level and not on a per email address

basis. Thus a more patient and resourceful adversary who is able to establish new

email accounts at a public email provider such as Google, can use that account to send

targeted email and the authentication mechanisms will simply validate that Google’s

mail servers were authorized to send email using Google’s domain. This does not say

anything about the intent of the user using the Google system. These approaches only

help in situations where a threat actor is spoofing an email using another domain since

these authentication mechanisms will flag those attempts. Short of full adoption, it

only takes a malicious actor to identify one trusted sending domain name which does

not use any email authentication systems in order to send spoofed and malicious email

to countless other receiving organizations. Receiving organizations would need to be

willing to drop email from domains that don’t use email authentication approaches
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but due to business drivers and the criticality of email communication, this approach

would not normally be acceptable.

2.3.2 Contextual

The bulk of email filtering related research falls into the contextual analysis category.

These are techniques which leverage the actual content of the email when making

filtering decisions. Contextual approaches span from simple dirty word searches to

machine learning to hash based techniques. The result of contextual analysis is usually

a probabilistic answer with regards to the legitimacy or illegitimacy of an email instead

of a binary answer typically associated with the authentication approaches described

above. This allows for multiple techniques to be combined together to enhance a

particular detection capability.

Basic approaches to contextual analysis include processing a set of rules, or

heuristics, that assign a score to the presence of certain words or phrases in an email.

Rules can be established using words or phrases commonly found in the types of email

that are being sought. Graham (2002) shows that this sort of rules-based approach is

feasible for detection of spam but is problematic since a high number of false positives

result when trying to approach 100 percent detection of spam. Stone (2007) uses

a rules-based approach based on Natural Language Processing (NLP) and is able

to achieve a 75 percent detection rate using four rules for detecting phishing emails.

Evading these types of filtering techniques is rather trivial since a threat actor only

needs to craft emails to change words that avoid any of the rules in the defined rule set.

In the case of a threat actor that might be repurposing legitimate email, such as the

example in Figure 1.1, this sort of heuristics based approach to identify a bad email

will certainly fail since the email content is legitimate. Email content is very easily

changed by a threat actor and as such does not have great durability with regards to

detection.

In seminal papers, Sahami et al. (1998) and Pantel and Lin (1998) describe machine-

learning Bayesian based approaches for filtering spam. Interestingly, Sahami et al.

incorporate additional properties in the classification vector for each email such as

27



www.manaraa.com

whether an attachment is present. They note that most junk email does not have

an attachment and is sent at night which based on more recent reports of advanced

attacks covered earlier in this dissertation, may not be the case for detecting attacks

from a different class of adversary. Different threats may have different behaviors.

Androutsopoulos et al. (2000a) compare several Bayesian approaches to basic heuristic

or keyword based approaches and note that the Bayesian approaches are superior

even with a small amount of training. Other researchers have explored the use of

Bayesian approaches including Schneider (2003) who finds that a multi-nomial model

that incorporates word frequency information in the email classification vector is

superior to multi-variate Bernoulli models that do not. Chen et al. (2007) finds that

incorporating email headers in the Bayesian analysis, not just email body, improves

classifying performance. Bayesian techniques are the most explored technique for

email filtering in the literature and very often researchers will benchmark newly

created algorithms against basic Bayesian approaches. It is an effective technique for

identifying spam and is incorporated into open-source and commercial email filtering

systems.

Additional machine learning contextual based approaches to filtering email include

Support Vector Machines, Neural Networks and Memory Based Approaches. Drucker

et al. (1999) first leverage Support Vector Machines (SVMs) for separating spam from

non-spam email. Both sets of training email are mapped to a higher-dimensional space

and a hyperplane is created that has a maximum distance between the sets. Once

the SVM is trained, the hyperplane is used as a decision boundary for categorization

of emails as spam or non-spam. Bergholz et al. (2008) also leverage SVMs but

specifically for the detection of phishing emails. They incorporate basic email features

in their email classification vector but also include two advanced features based on

Dynamic Markov Chains and Latent Topic Models which show improvement over

SVM approaches that do not include the advanced features. Clark et al. (2003) use a

backpropagation neural network classifier for filtering and find that it outperforms

Bayesian approaches but takes significant training time. Tzortzis and Likas (2007) use

a Deep Belief Network, a Neural Network with more hidden layers, with comparable
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results to SVMs and Sirisanyalak and Sornil (2007) use a backpropagation classifier

that has a feature extraction technique based on artificial immune systems. Sakkis

et al. (2001) use a memory based approach that does not create a model for each

category of email but simply stores the training emails and computes the similarity of

new emails to stored emails using a k-Nearest-Neighbor algorithm. They find that

this approach yields comparable results to Bayesian techniques.

Several contextual based approaches are based on hashing and coding techniques

that create representations of email using digests, hashes or codes and uses these

representations for comparison purposes when trying to determine how to filter an

email. Yoshida et al. (2004) introduces a technique that creates a set of hashes based

on shifting substrings of the text in an email. These hashes are then compared to

count the number of similar emails in a particular set. These researchers report this

approach as having superior speed and classification accuracy than Bayesian, SVM and

Memory Based filtering approaches. Zhou et al. (2005) introduce a learning approach

that uses Huffman coding to create a representation of training data. Since their

algorithm does not require the representation of earlier messages to be updated it can

be applied in real-time which allows the classifier to adapt to changes as they occur.

Delany and Bridge (2006) present a feature extraction free case-based approach which

stores previously categorized emails and computes similarity using text compression as

the distance metric. They report superior email classification performance compared

to other case-based approaches but note that using text compression introduces

added computing overhead even though there is no overhead associated with feature

extraction. Damiani et al. (2004) create a Peer to Peer (P2P) architecture for

collaborative filtering that uses digests to represent emails for comparison purposes.

The added benefit for filtering spam or phishing is that the system is able to leverage

a potentially world-wide knowledgebase when making filtering decisions.

A subset of contextual approaches examine the Internet links in email bodies to

make filtering decisions. Kolesnikov et al. (2003) present an approach that mines

search engines, such as Google, for categorization information about Internet Uniform

Resource Locators (URLs) contained in emails. The category of any URLs found in
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an email are used to determine the appropriate categorization of the email itself. Liu

et al. (2006) developed an approach that is focused on phishing detection that also

examines URLs contained in email but instead of looking at the category of the URL

their technique examines the structure of the webpage. If the webpage includes a

form for entering usernames, passwords, account or other sensitive information it will

flag as a phishing webpage which in turn categorizes the email containing that URL

as a phishing email. Chandrasekaran et al. (2006) extend this approach by not only

extracting the types of form fields on a webpage but by mimicking a user response by

providing fake data to the requesting website and analyzing the result using a set of

rules.

For targeted malicious email, it is conceivable that contextual based approaches

may provide some benefit if there are common content elements across emails from

a particular malicious actor. Based on the low volumes of targeted malicious email,

creating a large and relevant enough training set would be problematic. P2P and other

collaborative approaches make a fundamental assumption that a large population

will receive a particular email such that others in the distributed network could

validate the categorization. In a targeted email attack scenario, if only one or two

organizations receive a particular email, the distributed network may not have any

references available to help make a filtering decision.

2.3.3 Characterization

Some email filtering techniques leverage network traffic or other behavioral characteri-

zation techniques designed to focus on the behaviors of the actors sending the email.

Similar to contextual approaches, probabilistic answers are the result.

For the purposes of filtering spam from non-spam, Gomes et al. (2004) demonstrate

that spam traffic has different characteristics than non-spam in the areas of email

arrival times, email sizes and number of recipients per email. These differences can be

used as the basis for making filtering decisions. Beverly and Sollins (2008) exploit the

fact that spammers, in order to send large quantities of email, need to leverage large

numbers of resource constrained hosts. They created a tool called “SpamFlow” which
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has a classifier based on network transport layer properties such as packet Round

Trip Time (RTT). For resource constrained hosts being used by spammers, they find

that the network congestion or asymmetric nature of the links used by these hosts

introduces significant packet level delay.

By studying the domains that spammers target instead of just using the spammers

IP address, Ramachandran et al. (2007) are able to create a dynamic spammer blocklist

by clustering similar sending patterns. They created a tool called “SpamTracker” that

when used across several domains is effective in distinguishing spam from legitimate

email even before spammers are listed on conventional blocklists. Focused primarily

on filtering email borne viral propagation occurring via infected attachments, Bhat-

tacharyya et al. (2002) created a tool called “MET” (Malicious Email Tracker) that

leverages a client/server architecture to track statistics of email sent and received to

determine if there are viral propagations occurring. Any identified viral emails can be

filtered out once identified, and new viral propagations can be discovered early.

Alternative behavioral characterization approaches focus on identifying a fingerprint

of the author of emails. (O’Brien and Vogel, 2003) leverage authorship identification

techniques, specifically a Chi by degrees of freedom approach, for the purposes of

filtering spam and find that it performs equal to or better than Naive Bayes. McCombe

(2002) provides a good overview of authorship identification techniques which have

applications far beyond email filtering. Finally, Calais et al. (2008) leverage a frequent

pattern tree in order to uncover features that are common to multiple emails sent by a

single spammer. The pattern tree exploits the fact that spammers may reuse elements

from one email to the next, perhaps when using a single spam tool, in a campaign of

spam. Using this tree based approach, they are able to identify roughly 16,000 spam

campaigns across a data set of more than 97 million emails.

One of the challenges with characterization based approaches to filtering email

is a general reliance on the defining characteristic of volume which is normally only

suitable for filtering spam. Since targeted email attacks are generally low volume and

mimic other normal email characteristics such as rate and message content, filtering

using these mechanisms is problematic. A frequent pattern tree approach might be
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relevant if the right headers and other email features are used to find commonality

across targeted malicious email.

2.3.4 Reputation

Reputation based approaches to filtering email are based on maintaining lists of

good vs. bad or calculating a level of trust through relationship linkages. Whitelists,

blacklists and DNS-based Real-time Block Lists (DNS RBLs) are examples of list

based reputation filtering. Leveraging social networks for establishing trust due to

relationship linkages is another form of reputation analysis used in email filtering. In

these approaches, the reputation of an email is calculated based on the sum of the

component reputations; known bad senders can decrease an email’s overall reputation

whereas known good sending IP addresses can increase an email’s overall reputation.

The majority of the research is focused on sender, not recipient, reputation.

Erickson et al. (2008) use a combination of challenge-response and a persistent

whitelist per user for filtering legitimate email. They find that even though there

is some initial user-overhead required for managing the whitelist, over a period of

two years very little spam appears in users’ inboxes. However, they do make a fairly

significant assumption that sender-based authentication services, described above, are

a prerequisite to prevent simple spoofing. Duan et al. (2004) created DiffMail, an

architecture that allows user to classify senders into allowed, unknown and not allowed.

Using this classification, unknown emails are then left on the sending mail server with

only header information being sent to the recipient. The recipient can then retrieve

the rest of the email if they want. This approach requires spammers to maintain

additional online resources if they want recipients to retrieve their emails. Jung and

Sit (2004) analyze DNS based black lists and find that across spam analyzed over a

roughly three year period, approximately 80 percent of spam sources are listed in at

least one of seven popular DNS based black lists. However, they show that relying

on only one or two lists is not sufficient since some lists are more conservative than

others when determining which sources get listed.

Several reputation based approaches to filtering email leverage social networks to
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establish relationship linkages or levels of trust. Golbeck and Hendler (2004) developed

a tool called “TrustMail” that allows users to assign a reputation rating to people

they know. Through a network of relationships, users are able to establish ratings

for people they don’t know. A slight variation, Garriss et al. (2006) designed “Re:” a

system that automatically populates whitelists using friend-of-a-friend relationships

and allows recipients to check if other recipients have whitelisted a particular sender.

Chirita et al. (2005) and Lam and Yeung (2007) build ratings for senders based on

social network graphs created from archives of email of a group of individuals. Boykin

and Roychowdhury (2004) also use a graph based approach but only create the social

network from a single user’s archive of email. Their approach leaves nearly 50 percent

of emails unclassified but they correctly categorize with 100 percent accuracy all spam

in their test dataset. Instead of using closed social networks, Rivera et al. (2008)

use the Google OpenSocial network alliance and set of interfaces for establishing

sender reputation. This allows them to query Internet based social networks such as

Facebook9, MySpace10, Hi511, orkut12 and Friendster13.

Reputation based approaches are typically sender oriented but Abaca Technology, a

company in San Jose, CA, has developed a recipient reputation based filtering system.

Their spam-focused technology, called ReceiverNet, aggregates the reputations of

recipients of a message to determine if a message is legitimate or spam. Some email

addresses are considered more likely to receive spam and others are considered less

likely to receive spam. This approach is beneficial when a spammer sends an email to

a large number of recipients (Abaca Technology, 2007).

One feature of targeted malicious email noted in chapter one is that threat actors

will spoof known senders for a particular recipient. A fundamental assumption in most

of the reputation based approaches for filtering email is that senders are authenticated,

if not, a trivial spoofing of the email From address will significantly degrade the

effectivity of these approaches.

9http://www.facebook.com
10http://www.myspace.com
11http://hi5.com
12http://www.orkut.com
13http://www.friendster.com
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2.3.5 Resource Consumption

Instead of only passively filtering email, resource consumption based approaches

actively increase cost to senders. Costs are increased through increased use of resources

such as network bandwidth or computing power. Threat actors, for example, may

need more time to send the same number of emails or they will have to identify new

relays or targets to evade resource constraining email servers.

Tran and Armitage (2004) propose an approach that leverages reputation and

contextual based approaches to detect spam early in the email transmission. Bandwidth

is then reduced or latency increased to the network flow associated with that email.

By doing this, connections take longer to complete and result in more resources

being needed by the sender to send the same quantity of email when no delays are

introduced. To be effective, emails have to be flagged as spam early to significantly

impact sender resources. Ultimately, all email is delivered resulting in a much lower

penalty for false positives than outright rejection but unwanted email appears in users’

mailboxes at a lower rate. Li et al. (2004) also slow network flows associated with

unwanted email but do so using a contextual rules-based approach that identifies

spam early in the transmission and does not acknowledge received network packets

or changes the transmission window back to the sender. This approach results in

spammer throughput being reduced hundreds of times.

Marsono et al. (2007) describe a two queue mail system that classifies email as

spam or not spam before handing it off to the appropriate queue. Modeling by using

queueing theory, Marsono et al. show that they can reduce the load on email servers

and slow the delivery rate of unwanted email by rejecting email when the unwanted

email queue is full.

Two final resource consumption based approaches introduce cost to the sender

by requiring senders to prove some extra computation was done before accepting an

email. Back (2002) introduces HashCash a system that requires senders to solve a

cryptographic puzzle to send email to a particular recipient. This puzzle requires

computing time on the sender’s side to be solved. A similar approach is presented
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by Dwork et al. (2003) of Microsoft Research but these researchers use a memory

bound approach instead of the CPU bound approach proposed by Back. Dwork et al.

demonstrate that memory bound approaches may make the differences between older

and newer systems in terms of CPU computational power less relevant.

Resource consumption based techniques for filtering email are largely focused on

threat actors who send large amounts of email. This activity is typically associated

with spammers. In all of the approaches, unwanted email is still ultimately delivered

to the recipient but senders are not able to send the large volume of email they would

normally send without resource consumption constraints. Additionally, the impact of

these techniques is felt by the last email relay in a chain of email relays. If a particular

email relay is being used for both legitimate and illegitimate email, it will suffer the

same impact and the threat actor’s system may incur no penalty because it is earlier

in the email relay chain. Finally, large networks of compromised machines, such as

botnets, may be able to overcome computational or bandwidth limitations through

sheer brute force.

2.4 Existing weaknesses

Existing techniques for filtering email have limitations when applied to targeted

malicious email. Authentication based techniques require receivers to enforce domain

level authentication upon email receipt. Since these techniques are not fully adopted

across the Internet, enforcing the authentication at all times is not possible. To

complicate matters, the authentication is at the domain level, not on a per email address

basis. Thus, a public webmail provider like Google, may be authenticated but a threat

actor may have created an email account for the purposes of sending targeted malicious

email. Contextual approaches typically focus on message content, making classification

decisions largely on the words in the body of an email. From a threat actor’s perspective,

message content is the easiest to change and thus is not very durable across multiple

email campaigns from the same threat actor. Furthermore, since targeted malicious

emails often have message content very specific to the recipient, finding common

words across emails is not as relevant as it is with spam. Characterization based
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approaches to filtering email usually involve quantifying aspects of email volume; low

volume attacks such as targeted malicious emails are likely to remain undetected.

With targeted malicious email, known email addresses and names are used which

hampers the effectivity of reputation based approaches. Finally, resource consumption

based techniques for filtering email are largely focused on malicious actors who send

large amounts of email, typically spammers.

Targeted malicious emails are low volume and directed at certain recipients, which

is in contrast to spam which is often directed at numerous recipients and is of high

volume. Existing approaches to filtering email are focused on specific attacks but

do not leverage features that are more durable and possibly common across a set

of attacks from a particular threat. As outlined in Figure 2.3, threat actors have

to execute multiple steps to achieve their objective. Some of these steps, such as

weaponization, are more complicated to make unique from attack to attack. Tools such

as anti-virus typically intervene fairly late in the threat kill chain with little insight

into steps such as reconnaissance. By focusing on steps in the kill chain that are more

difficult for the threat actor to readily manipulate, greater detection capability for

targeted malicious emails can be achieved.
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Chapter 3: Research Goals and Hypotheses

3.1 Research Goals

The goal of this research was to develop new methods for filtering email that are

specifically designed to address the threat posed by targeted email attacks employed

by advanced threat actors. Conventional approaches to filtering email are well suited

to Internet-scale email abuse, such as spam and phishing, but do not readily apply

to targeted email attack scenarios. Introduction of these new methods required the

creation of software modules to integrate into an existing email detection architecture.

The effectivity of these new techniques are evaluated to determine if the introduction

of these new techniques adds statistically significant improvement over conventional

approaches. The primary focus of methods described in this research is high sensitivity

(e.g. low false negatives) detection.

The goals of this research can be summarized as follows:

1. To develop a framework that incorporates an array of email features that can

be applied to email filtering decision logic.

2. To identify any association between targeted malicious email and persistent

threat or recipient oriented features of email.

3. To measure the effectivity of email filtering that leverages persistent threat or

recipient oriented features of email as compared to conventional email filtering

that does not.

3.2 Hypotheses

This research has the following associated hypotheses:

H1 Targeted malicious email demonstrates association to persistent threat features of

email such as locale and tools as compared to non-targeted malicious email that

does not show an association to persistent threat features.
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H2 Targeted malicious email demonstrates association to recipient oriented features

such as role, reputation, relationships and access as compared to non-targeted

malicious email that does not show an association to recipient oriented features.

H3 Detection of targeted malicious email using persistent threat and recipient oriented

features results in fewer false negatives than detection of targeted malicious email

using conventional email filtering techniques.

Researching these hypotheses requires samples of both targeted malicious and

non-targeted malicious email. These emails were obtained from a large organization

that has been subjected to targeted email attacks.
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Chapter 4: Research Method

In this study, new techniques for email filtering and detection of targeted malicious

email (TME) are introduced and analyzed. Detecting TME requires building a classifier

that incorporates a variety of email features not used in conventional email filtering

techniques. One shortcoming of conventional email filtering techniques is their general

reliance on sender controlled and easily manipulated parameters such as email content.

By augmenting these conventional methods with new features that can not be readily

manipulated by threat actors, such as recipient oriented features and indicators left by

weaponization tools, detection methods are more durable. Additionally, it is important

to remember that threat actors are humans that make mistakes; examining, in detail,

the clues they leave behind leads to the development of a threat specific detection

capability. As attacks become more targeted, less voluminous, and more surgical,

appropriate defenses must also be tuned carefully to keep pace.

This chapter will cover: a description of the data used in this study, statistical

methods to analyze the data, a thorough description of persistent threat and recipient

oriented features of email, an outline of the software created to execute this study, a

description of the classifier applied to the data, and an outline of the methods used to

compare new and conventional detection techniques.

4.1 Data

Typically, data sets used to evaluate email filtering techniques are incomplete or an

amalgamation of several different data sets. For example, the PU11 and ling-spam2

corpora commonly used for evaluating the performance of spam filters are mixtures of

known spam and known legitimate emails from different sources (Androutsopoulos

et al., 2000a). Privacy concerns make it difficult to obtain legitimate email for analysis

and to further complicate matters, data sets sometimes lack email header information

1PU1 Corpora -
http://www.iit.demokritos.gr/skel/i-config/downloads/pu1_encoded.tar.gz

2Ling-spam Corpora -
http://www.iit.demokritos.gr/skel/i-config/downloads/lingspam_public.tar.gz
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or are sanitized to the point where useful information is lost. Since the bulk of email

filtering research is in the text classification area, a lack of email headers has not

generally presented a problem. Although, it is possible that the research has been

focused on text classification due to the absence of data that would allow otherwise.

This study aims to measure the added value of including features of malicious email

that are persistent threat and recipient specific. Since recipient specific features require

additional context beyond what is available in an email itself, typical publicly available

corpora do not suffice. The data used in this study, came from a large Fortune 500

company, with more than 100,000 users, which has been exposed to targeted malicious

email. Additional recipient context, such as job function, was added from an internal

company directory. In a security incident handling system, the company has recorded

emails which have been manually identified as targeted and malicious.

4.1.1 Data use approvals

Use of this data was fully reviewed with the company’s legal counsel and information

security personnel. While research was conducted using actual data, all results have

been sanitized to anonymize both the company and any users of the company’s email

system. Throughout the study, the company’s name is substituted with “company” or

“example” if used in the context of a domain name. Any sensitive features which would

reveal too much about the company’s detection capability are redacted for security

purposes.

4.1.2 Data sets created and used

Multiple data sets were created and used in this study. The following sections will

describe each one in detail.

User Information

To provide recipient context for email, attributes of the company’s email users were

mirrored from the company’s directory service and inserted into a separate relational

database for fast lookup. Table 4.1 contains all of the recorded attributes for each
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user. Many of these attributes came directly from the internal company directory

and a few, such as google search count, were added based on other collected data.

The field, business area, was manually created by normalizing the company field and

providing a mapping of business units (i.e. company) to business areas. As with any

large organization, not all of the data was consistent and had to be cleaned up to

create a common format across the entire user population. The field, title short, was

also manually generated and based on the title field. The title short field was used

to group like disciplines, such as Finance or Systems Engineering, together. Email

addresses for everyone in the company were checked against Google, using the Google

API3, and the number of search results for every email address was recorded in the

field google search count. Finally, the field num tme received, contains a count of the

number of known TME received by this user since the beginning of the study.

Table 4.1: Per user fields from company directory

Field Name Description

id Internal unique identifier. This does not come from
the directory service

cn Common Name for a user, typically “Last Name, First
Name Middle Initial” (e.g. “Doe, John X.”)

sn Last Name

givenname First Name

middlename Middle Name

initials Middle initials

sAMAccountName User account name

mail User email address

companyEmployeeID Company internal employee ID

company Business unit for this user

business area Business area for this user. Business areas comprise
multiple business units

locationdescription Facility or campus where user is located

st State where user is located

title Full title of user

title short Shortened title which groups like disciplines together

level Job level of the user (e.g. level 1 is an entry level user,
level 10 is the CEO)

userprincipalname User account string including directory information

c Country where user is located

Continued on next page. . .

3Google Code - http://code.google.com

41

http://code.google.com


www.manaraa.com

Table 4.1 – Continued

Field Name Description

extensionattribute2 Additional attributes about the user

manager User’s manager’s name

manager id User’s manager’s internal employee ID

distinguishedName Full directory identifier for this user

google search count Number of times this user’s email address appears in
Google search results

num tme received Number of times, since the study started, user has
been the recipient of a targeted malicious email

memberOf Recorded in a linked table, this field contains all of
the group memberships that this user has recorded as
part of their account information

Non-targeted malicious email data set

A non-targeted malicious email data set consisting of 20,894 random emails from a

2.5 month period from September 1, 2009 through November 20, 2009 was assembled.

This data set only includes emails from the Internet to the company, no intra-company

emails were included. This data set includes only those emails that were passed

by a commercial anti-spam system. Thus, emails that were classified as generic

Internet spam by the commercial anti-spam system were removed from this data set.

Additionally, email in this data set was not processed by a commercial anti-virus

system (the email collection point was pre anti-virus). Email collection was facilitated

using a Linux-based collection system, connected to the network via a network tap.

The Linux system ran the Vortex-IDS4 which allowed reconstruction of email off the

network wire into files. Table 4.2 summarizes this data set, referred to as NTME1 in

this study.

Table 4.2: NTME1 - Non-targeted malicious email data set

Data set name NTME1
Date Span September 1, 2009 through November 20, 2009

Total Emails 20,894 (unique)

4Vortex-IDS - http://sourceforge.net/projects/vortex-ids/
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Targeted malicious email data set

Through manual computer forensics and information sharing with a community

knowledgeable with targeted malicious email, this company retroactively identified

targeted malicious emails. These emails were manually reviewed to confirm their

membership to this classification of email. This data set consists of 2,315 emails from

April 16, 2009 through December 19, 2009. The time period is longer due to the

very low number of targeted malicious emails received as compared to non-targeted

malicious email. Table 4.3 summarizes this data set, referred to as TME1 in this

study.

Table 4.3: TME1 - Targeted malicious email data set

Data set name TME1
Date Span April 16, 2009 through December 19, 2009

Total Emails 2,315 (unique)

Joint non-targeted malicious and targeted malicious email data set

For supervised learning, testing, and feature importance a joint NTME1 and TME1

data set is used. Table 4.4 summarizes this data set, referred to as NTME1-TME1 in

this study. TME1 represents 9.97% of the joint data set.

Table 4.4: NTME1-TME1 - Joint non-targeted malicious
and targeted malicious data set

Data set name NTME1-TME1
Date Span April 16, 2009 through December 19, 2009

Total Emails 23,209 (unique)

Spam recipients data set

A spam recipients data set was constructed using spam log data from a 2.5 month

period from September 1, 2009 through November 20, 2009. Full emails were not

available, only transactional logs. Thus, this data set was used only for determining if
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some recipient oriented characteristics differ in spam emails as compared to targeted

malicious email. Table 4.5 summarizes this data set, referred to as SP1 in this study.

Table 4.5: SP1 - Spam recipients data set

Data set name SP1
Date Span September 1, 2009 through November 20, 2009

Total Email Addresses 666,602 (non unique)

Test only email data set

As an added step to measure the effectiveness of methods developed in this study, a

separate email data set was created. This data set was not used in training at all and

only for evaluation purposes once a classifier model had already been created. This

data set consists of 1,457,729 emails from December 22, December 24 and December 30,

2009. This represents a full three days of post spam filtered email. These three days

were selected since the company had discovered targeted malicious emails on these

days as a result of internal intelligence analysis and sharing with industry partners.

The company’s security team identified 44 targeted malicious emails in these three

days. Table 4.6 summarizes this data set, referred to as TS1 in this study.

Table 4.6: TS1 - Test only data set

Data set name TS1
Date Span December 22,24,30 2009

Total Emails 1,457,729
Total TME 44

4.2 Software and Database

4.2.1 Software

In this study free and open-source software was leveraged for data collection and

classification, custom software was written for everything else.
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Free and open-source software

To facilitate the collection of email, the Vortex-IDS was used. “Vortex is a near real

time IDS and network surveillance engine for TCP stream data. Vortex decouples

packet capture, stream reassembly, and real time constraints from analysis. Vortex

is used to provide TCP stream data to a separate analyzer program” (Smutz et al.,

2010).

To execute the classification algorithms needed in this study, the Waikato Environ-

ment for Knowledge Analysis (WEKA) data mining toolkit was used (Hall et al., 2009).

WEKA is an open source Java based application that processes data using a variety of

machine learning algorithms. In addition, the R Project for Statistical Computing was

used as a supplementary tool for feature analysis and feature importance calculations

(R Development Core Team, 2009).

Custom developed software

The software created for this study facilitated both data collection and data normal-

ization. Software was created to perform the following functions:

• Directory Information - Perl5 scripts were created to authenticate against the

company’s directory service as well as iterate through all person objects and

extract the fields outlined in Table 4.1. The Lightweight Directory Access

Protocol (LDAP) was used to interface with the directory. Several helper scripts

were written to clean and normalize information (e.g. grouping titles into

categorical short titles as seen in Table 4.1). Scripts were also created to insert

the extracted information into a relational database.

• Email Features - Perl scripts were created to extract relevant features from email.

A base interface to parse email was created by the company for its internal

detection objectives. This interface was modified and extended to support the

needs of this study. The scripts created converted email fields into feature vectors

suitable for import into a classification tool.

5Perl - http://www.perl.org - Perl is an interpreted programming language
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• Google Search - Leveraging the Google Search API6, scripts were created to

query Google for each user’s email address and record the number of search hits

for that email address. For this study, the number of Google search hits was

recorded as of the time of data analysis not when the actual email was received.

This information was recorded in Table 4.1.

4.2.2 Database

The database used in this study was MySQL7 which is a popular open-source relational

database. The database contained user information that was mirrored from the

company’s directory service. This mirroring was done to minimize the interaction with

the company directory during the software development and test phase of the study.

A database is not necessarily required as queries can be executed directly against the

directory service using the Lightweight Directory Access Protocol (LDAP). A number

of indices were created to increase query time for certain key fields such as the user’s

email address.

4.3 Statistical methods

The principal method of analysis for this research lay in the use of statistical testing.

The application of specific inferential tests as well as machine learning applied statistical

methods were used.

4.3.1 Inference for proportions

In later sections, the data sets in this study will be analyzed with respect to email

feature proportions. Some of the data sets demonstrate proportion differences with

certain email features that are relevant for enhancing email filtering. Devore (2004)

describes how to compare population proportions with large samples and that method

is adapted below for this study.

6Google AJAX Search API - http://code.google.com/apis/ajaxsearch/
7MySQL - http://www.mysql.com
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Assume p1and p2 denote the proportions of email recipients in populations 1 and

2, respectively, who have a certain characteristic (e.g. job title). As an example,

populations 1 and 2 could be spam recipients and targeted malicious email recipients.

Further, assume there are a sample of m recipients from the first population and n

from the second. Finally, let independent random variables X and Y represent the

number of email recipients in each population sample having a certain characteristic.

It is assumed that there are at least 10 spam and non-spam recipients, along with at

least 10 targeted malicious and non-targeted malicious recipients. Additionally, the

two samples are random samples that are less than 10% of their respective populations

and the samples were selected independent of each other.

Hypothesis Testing

The null hypothesis for comparing two populations is that the two proportions are

the same:

H0 : p1 − p2 = 0

H0 : p1 = p2 (4.1)

Depending on the proportions being compared the alternative hypothesis can be one-

sided (showing greater-than or less-than) or two-sided (simply showing the proportions

are different):

HA : p1 − p2 > 0 (p1 > p2)

HA : p1 − p2 < 0 (p1 < p2)

HA : p1 − p2 6= 0 (p1 6= p2) (4.2)

Since the population sizes are much larger than the sample sizes in this study, the

distribution of X can be assumed binomial with parameters m and p1 and Y can be

assumed binomial with parameters n and p2. The best estimate for the difference in

population proportions, p1 − p2, is the difference in sample proportions X/m− Y/n.
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Setting p̂1 = X/m and p̂2 = Y/n, the estimator of p1 − p2 can be written as p̂1 − p̂2.

Since X and Y are assumed binomial, the expected values are E(X) = mp1 and

E(Y ) = np2. Equation 4.3 derives the formula for the expected value of the difference

in population proportions.

E(p̂1 − p̂2) = E

(
X

m
− Y

n

)
=

1

m
E(X)− 1

n
E(Y )

=
1

m
mp1 −

1

n
np2

= p1 − p2 (4.3)

The variance for the difference in population proportion is shown in Equation 4.4

where V (X) = mp1q1 and V (Y ) = np2q2.

V (p̂1 − p̂2) = V

(
X

m
− Y

n

)
= V

(
X

m

)
+ V

(
Y

n

)
=

1

m2
V (X) +

1

n2
V (Y )

=
p1q1
m

+
p2q2
n

(4.4)

Since the standard deviation (σ) is equal to the square-root of the variance, the

standard deviation of the proportion difference is:

σ(p̂1 − p̂2) =

√
p1q1
m

+
p2q2
n

(4.5)

The proportions will be compared using z test statistic:

Z =
x− µ
σ

(4.6)

The test has to be carried out assuming H0 is true which means that p1 − p2 = 0.

Therefore, E(p̂1 − p̂2) = µ = 0. With p1 = p2 the Z test statistic becomes:

Z =
p̂1 − p̂2√

pq

(
1

m
+

1

n

) (4.7)
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The null hypothesis, H0, does not specify a common value of p1 and p2 so it has to

be estimated. Since both populations are assumed to have the same p, both sample

populations can be pooled together:

p̂pooled = p̂ =
X + Y

m+ n
=

m

m+ n
p̂1 +

n

m+ n
p̂2 (4.8)

Using this new pooled estimate of p and defining q̂ = 1− p̂ the Z test statistic becomes:

Z =
p̂1 − p̂2√

p̂q̂

(
1

m
+

1

n

) (4.9)

A hypothesis test can be performed using this Z test statistic to determine whether

to accept or reject the null hypothesis when comparing two populations with respect

to a certain characteristic. If the null hypothesis is that the two proportions are the

same (e.g. p1 = p2) then the P -value is the probability that the Z test statistic is less

than or greater than the Z critical value for that Z test statistic. This is known as a

two-tailed test. To reject the null hypothesis at the α = 0.05 level of significance, the

P -value has to be less than 0.05 which corresponds to a Z test statistic greater than

1.96. To reject the null hypothesis at the α = 0.01 level of significance, the P -value

has to be less than 0.01 which corresponds to a Z test statistic greater than 2.58.

However, if the null hypothesis is that one proportion is greater (or less) than another

proportion (e.g. p1 > p2), then the P -value is the probability that the Z test statistic

is greater (or less) than the Z critical value for that Z test statistic. This is known as

a one-tailed test. To reject the null hypothesis at the α = 0.05 level of significance, the

P -value has to be less than 0.05 which corresponds to a Z test statistic greater than

1.64. To reject the null hypothesis at the α = 0.01 level of significance, the P -value

has to be less than 0.01 which corresponds to a Z test statistic greater than 2.33. The

Z test statistics can be found in the Z-tables in most statistics textbooks.
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Confidence Intervals

Confidence intervals provide an interval estimate for p1 − p2. The confidence interval

can be calculated by:

p̂1 − p̂2 ± Z · σ = p̂1 − p̂2 ± Z
√
p1q1
m

+
p2q2
n

(4.10)

For a two-tailed 95% confidence interval, Z = 1.96 and for a two-tailed 99% confidence

interval, Z = 2.58. If only a lower bound or upper bound is needed, then a one-

tailed confidence interval can be calculated. For a one-tailed 95% confidence interval,

Z = 1.64 and for a one-tailed 99% confidence interval, Z = 2.33.

4.3.2 Inferences Based on Two Samples

At times it may be necessary to compare values obtained from two independent

random samples to determine if there is a statistically significant difference between

the values. Assuming X1, X2, . . . , Xm is a random sample from a population with

mean µ1 and variance σ2
1, and Y1, Y2, . . . , Ym is a random sample from a population

with mean µ2 and variance σ2
2, a two-sample t test can be conducted to determine

statistical significance. Devore (2004) outlines a two-sample t test where the sample

sizes may be unequal and the population variances have unknown values.

Hypothesis Testing

The null hypothesis for comparing two means is that the two means are the same (e.g.

µ1 − µ2 = 0).

H0 : µ1 − µ2 = 0

H0 : µ1 = µ2 (4.11)

Depending on the test being performed, the alternative hypothesis can be one-sided

(showing greater-than or less-than) or two-sided (simply showing the means are
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different):

HA : µ1 − µ2 > 0 (µ1 > µ2)

HA : µ1 − µ2 < 0 (µ1 < µ2)

HA : µ1 − µ2 6= 0 (µ1 6= µ2) (4.12)

The test statistic, where x̄ and ȳ are the means of X and Y , m and n are the sample

sizes, and s1 and s2 are the standard deviations of X and Y , is:

t =
x̄− ȳ√
s21
m

+
s22
n

(4.13)

The degrees of freedom, df, is calculated by:

df =

(
s21
m

+
s22
n

)2

(s21/m)2

m− 1
+

(s22/n)2

n− 1

(4.14)

Confidence Intervals

The two-sample two-sided t confidence interval for µ1 − µ2 with confidence level

100(1− α)% is:

x̄− ȳ ± tα/2,v

√
s21
m

+
s22
n

(4.15)

The corresponding one-sided confidence interval is:

Upper Bound : x̄− ȳ + tα,v

√
s21
m

+
s22
n

Lower Bound : x̄− ȳ − tα,v

√
s21
m

+
s22
n

(4.16)

4.3.3 McNemar test for comparing classifiers

In this study the McNemar test, using a χ2 distribution, is used to compare whether

two classifiers differ significantly in the ability to detect targeted malicious email.

51



www.manaraa.com

Specifically, this statistical test will be used to evaluate whether detection of targeted

malicious email using persistent threat and recipient oriented features results in fewer

false negatives than detection of targeted malicious email using conventional email

filtering techniques (see Section 3.2). As a non-parametric test the McNemar test,

unlike the t-test, does not make any assumptions about distribution(Everitt, 1977).

Given two targeted malicious email (TME) detection methods A and B, the following

variables are defined: n00 is the number of TME missed by both A and B, n01 is the

number of TME missed by A but not by B, n10 is the number of TME missed by B

but not by A, and n11 is the number of TME detected by both A and B. The total

number of TME being tested is n where n = n00 + n01 + n10 + n11 (Salzberg, 1997;

Dietterich, 1998). Table 4.7 summarizes these outcomes.

Table 4.7: McNemar Contingency Table

A-Correct A-Error
B-Correct n11 n01

B-Error n10 n00

Hypothesis Testing

The null hypothesis for comparing two detection methods is that there is no difference

in the ability to detect targeted malicious email. Stated differently, the two methods

should have the same error rate, which means that n01 = n10. Under the null

hypothesis, the expected counts are shown in Table 4.8. The two counts where the

methods agree, n00 and n11, are not relevant for determining the difference in detection

ability between the two methods.

Table 4.8: McNemar Test: Null hypothesis expected counts

A-Correct A-Error
B-Correct n11 (n01 + n10)/2
B-Error (n01 + n10)/2 n00

The alternative hypothesis is that the two classifiers are different in ability to

detect targeted malicious email. The test statistic is chi-square distributed with 1
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degree of freedom:

χ2 =
(|n01 − n10| − 1)2

n01 + n10

(4.17)

The null hypothesis is rejected if χ2 is greater than χ2
1,0.05 = 3.841 at an α = 0.05 level

of significance or greater than χ2
1,0.01 = 6.635 at an α = 0.01 level of significance.

4.3.4 Correlation Analysis

Some of the features in the data sets show some correlation between them. To measure

the extent of correlation between two quantitative variables, Pearson’s Product Moment

Correlation Coefficient, r, will be calculated. The value of r ranges from −1.0 to 1.0,

where positive values indicate positive correlation, negative values indicate negative

correlation, and values near 0 indicate little or no correlation.

r =
Σ(X − µX)(Y − µY )

NσXσY
(4.18)

To determine if the correlation coefficient is significant, either a one-tailed or two-tailed

t-test will be used. If there is a reason to hypothesize that X tends to increase (or

decrease) with respect to Y then a one-tailed t-test should be used. If there is no

good reason to expect positive or negative correlation a two-tailed t-test will be used.

The null hypothesis for a one-tailed t-test is that the correlation coefficient is equal to

0 and the alternative hypothesis is that the correlation coefficient is not equal to 0.

H0 : r = 0

HA : r 6= 0

(4.19)

For a two-tailed t-test the null hypothesis is that the correlation coefficient is equal to

0 and the alternative hypothesis is that the correlation coefficient is greater than zero
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(to test for positive correlation) or less than zero (to test for negative correlation).

H0 : r = 0

HA : r > 0 (for positive correlation)

HA : r < 0 (for negative correlation)

(4.20)

To conduct the test, the significance level has to be set (e.g. α = 0.05) and the critical

value of r is needed from a table of critical values of the correlation coefficient. For a

one-tailed test, the degrees of freedom, df = n− 1, for a two-tailed test, the degrees of

freedom, df = n− 2, where n is the number of observations. If r is less than or equal

to the critical value or r then the null hypothesis is accepted. If r is greater than the

critical value of r then the null hypothesis is rejected and the alternative hypothesis is

accepted.

4.4 Email analysis procedures

This study explores detection and filtering techniques incorporating two types of basic

features:

1. Persistent Threat - During the weaponization stage of the kill chain (see Section

2.2.2), a threat actor needs to weaponize an email so that upon delivery it will

result in a system compromise that facilitates unauthorized access. Weaponizing

an email involves various tools and other procedures that leave fingerprints useful

for detection purposes. Inevitably, threat actors resort to automation or other

procedural techniques that can enhance detection across a number of attacks.

There is a cost to creating an email weapon so threat actors may reuse weapons

with different delivery vehicles to achieve a measure of reuse. The combination of

tools, techniques, procedures, and infrastructure used by a threat actor measure

its capability.

2. Recipient Oriented - During the reconnaissance, weaponization, and delivery
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stages of the kill chain (see Section 2.2.2), a threat actor needs to define email

recipients, ensure a measure of relevancy to the recipient, and deliver a malicious

email to those recipients. The targeting frequency of recipients by threat actors

speaks to the intent of the threat.

4.4.1 Persistent threat features

Locale and tool are two types of persistent threat features that were incorporated into

email filtering techniques for this study. A broader set of persistent threat features

can be found in Section 2.2.2.

Locale

When a threat actor is preparing and launching an email weapon, certain elements of

the threat actor’s locale may be left in the email itself. If the threat actor is using a

malicious attachment as the malicious payload then the attachment may also have

indications of the threat actor’s locale. Locale can be inferred through language

settings, character encoding, time zone settings, and Internet Protocol (IP) addresses

and system host names.

Tool

Threat actors sometimes use automated tools to facilitate email weapon creation or

delivery. These tools will often leave fingerprints that can be incorporated into an

email filtering scheme. Some tools actually leave its name in an email and other tools

leave other more subtle clues.

4.4.2 Recipient Oriented Features

There are numerous recipient oriented features that can be incorporated into email fil-

tering techniques: role, relational, access and reputation. In this study, role and reputa-

tion based features were the focus. To illustrate various scenarios, fictitious individuals

Alice Roberts (alice.roberts@example.com) and Bob Smith (bob.smith@example.com)

who both work for Example.com will be used.
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Role

A threat actor may send an email to a particular individual because of their role in an

organization. For example, if Alice Roberts was the Chief Executive Officer (CEO) of

Example.com, a threat actor may target her thinking her system may have sensitive

information. In another scenario, Bob Smith who works in business development,

might be prone to receiving targeted emails simply because as a function of his job his

email address information is more readily available. Individuals in certain roles may

also have sensitive data of interest to a threat actor. A recipient’s role could be a job

title or also a job level (e.g. an entry level 1 employee vs. a senior level 3 employee).

Relational

Targeted malicious email may use a spoofed From address that is relevant to the

recipient. Assume that Alice is Bob’s manager. An example of a targeted email using

a spoofed From address relevant to the recipient would be a targeted email sent to

Bob spoofed using Alice’s real email address (alice.roberts@company.com). Another

example would be a targeted email sent to Bob spoofed using Alice’s name in an

email address at a public email provider like Yahoo! (alice.roberts@yahoo.com or

aliceroberts@yahoo.com). In either case, employee Bob may believe he is receiving a

legitimate message from his manager.

Other relational characteristics include the proximity of two email addresses on a

publicly available webpage. For example, if two email addresses appear together on

a publicly available webpage, that could be indicative of a relationship between the

users behind those two addresses and something a threat actor may want to exploit.

Access

Targeted malicious email may be sent to a particular recipient based on the desire of

a threat actor to gain access to certain information. For example, if Bob Smith is an

administrator for a large number of systems at Example.com or if he has access to

sensitive information he may be more prone to receiving a targeted malicious email.
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Since access to sensitive information is generally restricted to those who need it, access

may be closely associated with particular projects or activities that an employee

supports. If a threat actor is after information about ‘Project X’, someone who has

access to ‘Project X’ information is probably someone who is supporting that project.

Reputation

Just as some sender focused reputation approaches to filtering email maintain lists of

known bad senders, recipient reputation involves maintaining a list of recipients known

to receive targeted malicious email. It is conceivable that threat actors maintain a

database of email addresses for a specific target organization and that these email

addresses may receive more than one targeted malicious email over time. Another

dimension of reputation includes email visibility. Presumably, those email addresses

that are more publicly known and available are likely to be targets of unwanted

email. Email address visibility can be as straightforward as the number of times an

email address appears in an Internet search engine (e.g. Google.com). Furthermore,

employees who have left a company may continue to receive targeted malicious email

to their no-longer-valid email address as their email address will still exist in threat

actor databases or still appear on websites affiliated with a particular technology.

4.4.3 Detailed List of Features

In this study, a number of persistent threat and recipient oriented features were

extracted and calculated from emails being analyzed. Decisions on features to expose

for use in a classification algorithm were based on implementation complexity and

problem set relevance. Table 4.9 contains a summarized listing of features extracted

and exposed for all emails analyzed in this study. The columns for Table 4.9 are

defined as follows:

• Feature Name - Unique assigned feature name.

• Category (Cat.) - Category of this feature. “T” for persistent threat feature

and “R” for recipient oriented feature.
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• Type - Type of this feature. “N” for numeric, “B” for binary, and “C” for

categorical.

• Description - Short description of this feature.

To anonymize the name of the company whose data was used in this study,

“company”, “example” and “example.com” are used throughout the feature listing.
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Table 4.9: Detailed List of Extracted Email Features: Category: “T” for persistent threat, “R” for recipient oriented; Type: “N”
for numeric, “B” for binary, “C” for categorical

Feature Name Cat. Type Description

attachment T B 1, if an attachment exists, 0 else.

attachment doc T B 1, if a .doc (Microsoft Word) 8 attach-
ment exists, 0 else.

attachment htm T B 1, if a .htm attachment exists, 0 else.

attachment mdb T B 1, if a .mdb (Microsoft Access) attach-
ment exists, 0 else.

attachment pdf T B 1, if a .pdf (Adobe PDF) 9 attachment
exists, 0 else.

attachment ppt T B 1, if a .ppt (Microsoft Powerpoint) at-
tachment exists, 0 else.

attachment xls T B 1, if a .xls (Microsoft Excel) attach-
ment exists, 0 else.

cc empty T B 1, if the Cc: line is present but empty,
0 else.

cc no example R B 1, if the Cc: line does not include some-
one from the company, 0 else.

char encoding base64 T B 1, if the email uses base64 encoding, 0
else.

char encoding big5 T B 1, if the email uses big5 encoding, 0
else.

char encoding gb2312 T B 1, if the email uses gb2312 encoding, 0
else.

char encoding gbk T B 1, if the email uses gbk encoding, 0
else.

Continued on next page. . .

8http://office.microsoft.com
9http://www.adobe.com
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Table 4.9 – Continued

Feature Name Cat. Type Description

char encoding windows1252 T B 1, if the email uses windows1252 en-
coding, 0 else.

date header timezone T C Time zone offset (from Greenwich
Mean Time) of the Date: header field.

dkim header defined T B 1, if a DKIM header is present, 0 else.

email size T N Size of the email in bytes.

envelope recipients invalid percentage R N The percentage of invalid recipients
defined in the email envelope.

envelope recipients invalid total R N The number of invalid recipients de-
fined in the email envelope.

envelope recipients total R N The number of recipients (valid or in-
valid) defined in the email envelope.

envelope recipients valid addresses alpha ordered T B 1, if the envelope recipients are listed
in alphabetical order, 0 else.

envelope recipients valid avg google search count R N For all valid envelope recipients, the
average number of Google search hits
for the respective email addresses.

envelope recipients valid avg job level R N For all valid envelope recipients, the
average job level.

envelope recipients valid avg num tme received R N For all valid envelope recipients, the av-
erage recipient reputation of previous
targeted malicious emails received.

envelope recipients valid total R N The number of valid recipients defined
in the email envelope.

envelope recipients valid total business area A R N The number of valid envelope recipi-
ents in Business Area ”A”.

envelope recipients valid total business area E R N The number of valid envelope recipi-
ents in Business Area ”E”.

Continued on next page. . .
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Table 4.9 – Continued

Feature Name Cat. Type Description

envelope recipients valid total business area E2 R N The number of valid envelope recipi-
ents in Business Area ”E2”.

envelope recipients valid total business area I R N The number of valid envelope recipi-
ents in Business Area ”I”.

envelope recipients valid total business area S R N The number of valid envelope recipi-
ents in Business Area ”S”.

envelope recipients valid total title short bus devel R B The number of valid envelope recipi-
ents with job title ”Bus Devel” (Busi-
ness Development).

envelope recipients valid total title short bus devel analysis R B The number of valid envelope recipi-
ents with job title “Bus Devel Analysis”
(Business Development Analyst).

envelope recipients valid total title short communications R B The number of valid envelope recipi-
ents with job title “Communications”.

envelope recipients valid total title short international bus dev R B The number of valid envelope recipi-
ents with job title “International Busi-
ness Development”.

envelope recipients valid total title short program management R B The number of valid envelope recipi-
ents with job title “Program Manage-
ment”.

from domain aol T B 1, if the From: header email address
domain is aol.com.

from domain gmail T B 1, if the From: header email address
domain is gmail.com.

from domain gov T B 1, if the From: header email address
domain is .gov.

from domain hotmail T B 1, if the From: header email address
domain is hotmail.com.

Continued on next page. . .
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Table 4.9 – Continued

Feature Name Cat. Type Description

from domain example R B 1, if the From: header email address
domain is example.com.

from domain example invalid R B 1, if the From: header email address
from example.com is invalid.

from domain example similarity R N Similarity score of the from address,
if from example.com, to all company
email addresses.

from domain mil T B 1, if the From: header email address
domain is .mil.

from domain yahoo T B 1, if the From: header email address
domain contains “yahoo”.

from header encoding big5 T B 1, if the From: header uses big5 encod-
ing.

from header encoding gb2312 T B 1, if the From: header uses gb2312
encoding.

from header phrase contains email address T B 1, if the From: header email phrase 10

contains an email address.

from header phrase contains gov email address T B 1, if the From: header email phrase
contains a .gov address.

from header phrase contains example email address R B 1, if the From: header email phrase
contains a .example.com email address.

from header phrase contains mil email address T B 1, if the From: header email phrase
contains a .mil address.

from header phrase contains user of address T B 1, if the From: header email phrase con-
tains the user 11 portion of the email
address.

Continued on next page. . .

10If the From: header has“John Doe” <john.doe@example.com>as a value, “John Doe” is the phrase of the From: header email address
11If the From: header has “John Doe” <john.doe@example.com>as a value, “john.doe” is the user of the From: header email address
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Table 4.9 – Continued

Feature Name Cat. Type Description

from header phrase equals email address T B 1, if the From: header email phrase
equals the From: header email address,
0 else.

from header phrase exists T B 1, if the From: header email phrase
exists, 0 else.

from listserv T B 1, if the email came from an email
listserver, 0 else.

link exe T B 1, if the email contains a hyperlink to
an .exe file, 0 else.

link htm T B 1, if the email contains a hyperlink to
an .htm file, 0 else.

link zip T B 1, if the email contains a hyperlink to
a .zip file, 0 else.

message id [redacted] T B 1, if the Message-ID contains
“[redacted]”, 0 else.

mime boundary 2rfk T B 1, if the email contains a MIME bound-
ary with the characters “2rfkindysad-
vnqw3nerasdf” 12.

received line [redacted] T B 1, if a Received: line contains
“[redacted]” in the server name field,
0 else.

received line [redacted] T B 1, if a Received: line contains
“[redacted]”, 0 else.

reply to defined T B 1, if the Reply-To: header is defined, 0
else.

reply to from address notequal T B 1, if the Reply-To: email address is
different than the From: email address.

Continued on next page. . .

12The MIME boundary, “2rfkindysadvnqw3nerasdf” is generally associated with the Foxmail email client located at http://www.foxmail.com.cn
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Table 4.9 – Continued

Feature Name Cat. Type Description

reply to gmail T B 1, if the Reply-To: email address is at
gmail.com, 0 else.

reply to hotmail T B 1, if the Reply-To: email address is at
hotmail.com, 0 else.

reply to example R B 1, if the Reply-To: email address is at
example.com, 0 else.

reply to example invalid R B 1, if the Reply-To: email address at
example.com is invalid, 0 else.

reply to yahoo T B 1, if the Reply-To: email address is at
yahoo.com, 0 else.

to empty T B 1, if the To: header is defined but
empty, 0 else.

to gmail T B 1, if the To: header only contains a
gmail.com email address, 0 else.

to hotmail T B 1, if the To: header only contains a
hotmail.com email address, 0 else.

to no example R B 1, if the To: header does not contain
an example.com email address, 0 else.

to yahoo T B 1, if the To: header only contains a
yahoo.com email address, 0 else.

x forwarded to defined T B 1, if the X-Forwarded-To: header is
defined, 0 else.

x mailer aol T B 1, if the X-Mailer: header con-
tains“AOL”, 0 else.

x mailer aspnet T B 1, if the X-Mailer: header contains
“aspnet”, 0 else.

x mailer blat T B 1, if the X-Mailer: header contains
“blat”, 0 else.

Continued on next page. . .
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Table 4.9 – Continued

Feature Name Cat. Type Description

x mailer dreammail T B 1, if the X-Mailer: header contains
“DreamMail”, 0 else.

x mailer extreme mail express T B 1, if the X-Mailer: header contains “Ex-
tremeMail Express”, 0 else.

x mailer foxmail T B 1, if the X-Mailer: header contains
“Foxmail”, 0 else.

x mailer ghost mail T B 1, if the X-Mailer: header contains
“Ghost Mail”, 0 else.

x mailer outlook express T B 1, if the X-Mailer: header contains
“Outlook Express”, 0 else.

x mailer yahoomail T B 1, if the X-Mailer: header contains “Ya-
hooMail”, 0 else.
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4.4.4 Explanation of Features

The features of email that were exposed in this study were chosen based on imple-

mentation complexity and problem set relevance. Since this study aims to build a

classifier than can detect attacks from specific threat actors targeted at a defined set

of recipients, the chosen features were selected based on manual analysis of the corpus

of targeted malicious email. The following sections provide more insight into why

certain features were exposed.

Attachment

The two primary mechanisms for a threat actor to coerce a recipient to execute

malicious code are use of a malicious attachment or use of a hyperlink that points to a

malicious web page. The attachment related features are designed to expose whether

an attachment is present in the email and if so, the type of attachment. The two

predominantly exploited file types are Microsoft Office files (Microsoft Word, Microsoft

Access, Microsoft Powerpoint and Microsoft Excel) and Adobe Portable Document

Format (PDF) files. Due to embedded content, many legitimate emails contain .htm

(Hypertext Markup) attachments and many targeted malicious emails do not. Table

4.10 shows a breakdown of the total number of emails with at least one attachment,

a density representing the proportion of emails with at least one attachment, and

densities representing the proportion of attachments of a certain file type.

Table 4.10: Attachment proportions in the NTME1 and TME1 data sets

Data set Att Density doc htm mdb pdf ppt xls other
TME1 0.46 0.36 0.00 0.00 0.46 0.05 0.04 0.09

NTME1 0.09 0.11 0.15 0.00 0.19 0.02 0.07 0.45

The attachment densities indicate that the proportion of attachments (Att Density)

in targeted malicious emails is greater than the proportion of attachments in non-

targeted malicious emails. A quick Z -test for proportions indicates this difference

is significant at the α = 0.01 level of significance. Additionally, doc, pdf, and ppt

attachment types were significantly more prevalent in targeted malicious email (Z -test,
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α = 0.01). The htm and xls attachment types were significantly more prevalent in

non-targeted malicious email.

Cc Header

The Cc header, commonly referred to as the Carbon Copy header, is used legitimately

to add additional, non-primary, recipients to an email message. Standard email clients

will not include a Cc header in an email if there are no Cc recipients. In both data

sets the majority of emails do not use the Cc line and very few emails have someone

in the company addressed on the Cc line. TME1 appears to have slightly less usage

of the Cc line. The TME1 data set has significantly more empty Cc headers and

Table 4.11: Cc Header proportions between the
NTME1 and TME1 data sets

Data set empty no company
TME1 0.99 0.99

NTME1 0.93 0.96

significantly more Cc addresses not addressed to the recipient’s company (Z -test,

α = 0.01).

Character Encodings

Character encodings are a map between a character (such as the letter ”A”) and a

number to facilitate transmission and display on a computing system. For the purposes

of email, character encodings are threat specific and set during email creation, often

unbeknownst to the user since they are set by the email client or tools used to create

the email. Big5, GB2312 and GBK are all character encoding sets used primarily in

the far east region of the world. Base64 encoding is a binary-to-ASCII encoder that

obfuscates many text-based email analysis tools (e.g. regular expressions) but will

still render cleanly in most recipient email clients. It is also used most times when

there is an attachment to an email. The TME1 data set has significantly more base64,

big5, and gb2312 character encodings but the NTME1 data set has significantly more

windows1252 encodings (Z -test, α = 0.01).
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Table 4.12: Character encoding proportions in NTME1 and TME1
data sets

Data set base64 big5 gb2312 gbk windows1252
TME1 0.653 0.033 0.155 0.000 0.014

NTME1 0.166 0.009 0.001 0.000 0.025

Date Header

Emails typically include a Date header which is inserted by the mail client that sent

the email. The mail client will typically include the current time zone of the computer

running the mail client. The +0200, -0700, +0800, +0900 time zones, are more

prevalent in the TME1 data set than the NTME1 data set (Z -test, α = 0.01). The

+0200 time zone is in Eastern Europe and Central and South Africa. The +0800 and

+0900 time zones cover China to Japan. Interestingly enough, the -0700 time zone

was more prevalent in the TME1 data set even though this is the mountain time zone

of the United States. Some of the time zones are not even valid; emails systems do

not necessarily enforce format or compliance of this field to any standard.

DKIM

DomainKeys Identified Mail, or DKIM, is a cryptographic authentication mechanism

used to verify the validity of a domain name associated with a particular email message

(Delaney, 2007), (Allman et al., 2007), (Leiba and Fenton, 2007). An email with

a valid DKIM signature is authenticated as originating from the advertised From:

email domain. In this implementation, only the existence of a DKIM header is being

checked instead of actually verifying the signature. Verifying the digital signature is

expensive since it involves a lookup against Domain Name Services (DNS) records.

Manual analysis did not reveal any spoofed DKIM signatures, any signatures if present

were accurate. If spoofed DKIM signatures became prevalent, it is straightforward to

convert this feature to one that actually verifies the signature. A majority of emails

do not use DKIM, this is still a growing Internet standard. TME1 has a significantly

smaller proportion of DKIM signed emails than NTME1 (Z -test, α = 0.01). A number

of the TME1 emails are sent from Google Gmail servers so they contain correct DKIM
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Table 4.13: Date header time zone proportions in NTME1 and TME1 data sets

Time zone TME1 NTME1 Timezone TME1 NTME1
+0000 0.002 0.148 +0600 0.000 0.001
-0006 0.000 0.000 +0630 0.000 0.000
-0100 0.000 0.000 -0700 0.174 0.102
+0100 0.003 0.012 +0700 0.000 0.001
-0200 0.000 0.000 -0800 0.001 0.151
+0200 0.009 0.004 +0800 0.505 0.003
-0230 0.000 0.000 -0900 0.000 0.000
-0300 0.000 0.001 +0900 0.199 0.002
+0300 0.000 0.002 +0930 0.000 0.000
+0330 0.000 0.000 -1000 0.000 0.001
-0330 0.000 0.000 +1000 0.002 0.001
-0400 0.042 0.125 +1030 0.000 0.000
+0400 0.000 0.001 -1100 0.000 0.000
-0430 0.000 0.000 +1100 0.001 0.001
+0430 0.000 0.000 -1200 0.000 0.000
-0500 0.053 0.317 +1200 0.000 0.000
+0500 0.000 0.000 +1300 0.000 0.000
-0530 0.000 0.000 +1800 0.000 0.000
+0530 0.000 0.001 +1900 0.000 0.000
+0545 0.000 0.000 +2000 0.000 0.000
+0550 0.000 0.000 Unknown 0.000 0.003
-0600 0.009 0.122

headers, even though the sending Gmail account might be false and malicious.

Table 4.14: DKIM proportions in the NTME1 and TME1 data sets

Data set DKIM
TME1 0.181

NTME1 0.217

Email Size

Emails that include attachments are typically larger than emails without attachments.

Thus, email size is a useful feature to differentiate targeted malicious emails with

attachments from non-targeted malicious emails. Table 4.15 lists email sizes in bytes.

While the NTME1 data set has the largest email at 26MB, the average size of TME

emails is larger at 276KB.
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Table 4.15: Email size in the NTME1 and TME1 data sets

Data set min max mean stddev
TME1 1 KB 3.7 MB 276 KB 440 KB

NTME1 434 B 26.0 MB 95 KB 657 KB

Envelope Recipients

Emails when sent over the Internet are wrapped in an envelope that, similar to postal

mail, lists the real recipients of an email. The envelope is handled at the system level

and is not exposed to the user, instead a user sees the actual email. The actual email

may accurately reflect the correct recipients or it may spoof the actual recipients. This

group of mostly recipient oriented features describes the email recipients and various

characteristics of recipients. Several of the envelope recipient features characterize the

number of valid and invalid recipients. If threat actors are using a database of email

addresses, it is possible that some of those addresses become invalid as employees are

no longer associated with a company. Other characteristics of recipients exposed in

these features include the average job level across the valid recipients (where a job

level of 1 indicates an entry level employee and a job level of 10 indicates the Chief

Executive Officer) and the number of recipients working in a particular business area.

Similar to how anti-spam systems maintain a reputation of senders, there are two

features designed to characterize the reputation of email recipients. First, there is one

feature that calculates the average number of received targeted malicious email across

all recipients. Second, there is a separate feature that calculates the average number

of Google search hits for the respective email addresses. If threat actors are using a

database of email addresses, recipients that have received targeted malicious email are

likely to receive it again. Threat actors might seed a database of email addresses by

using a search engine such as Google to extract email addresses for a particular email

address domain. For example, executing a Google search for “john.doe@example.com”

will return all web pages where that email address exists. Similarly, executing a Google

search for “@example.com” will return web pages that contain email addresses from

the example.com domain. Part of the data set used in this study includes the number
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of Google search hits for all email addresses in the target company. Since an email

may include multiple recipients, for a given email the average number of Google search

hits is calculated. These recipient oriented features have a measure of durability since

the threat actor can not change them without changing the targeted recipients. Figure

4.1 shows a histogram of the number of email accounts that have received a certain

number of targeted malicious email at the company.
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Figure 4.1: Number of TME received by accounts at company

Examining the relationship between the number of Google search hits and the

number of targeted malicious emails that have been sent to that email address reveals

an interesting trend. Figure 4.2a shows the cumulative distribution function of Google

search hits in the company. A vast majority of email addresses are not listed in Google.

Figure 4.2b shows a scatter plot of Google search hits against the average amount

of targeted malicious email received by email accounts with that specific number of

Google search hits. The x-axis only uses the first 24 Google search hit bins which

accounts for 99.93% of the total population. Later bins are very sparsely populated.

Visual inspection shows a positive correlation between these two variables. The critical

values of the correlation coefficient, r, at the α = 0.05, 0.01, 0.005 significance levels in

a one-tailed significance test with 23 degrees of freedom are 0.3365, 0.4622, and 0.5052,

respectively. Using equation 4.18 the calculated correlation coefficient for Google
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Figure 4.2: Analysis of Google search hits

72



www.manaraa.com

search hits against average amount of TME received is r = 0.621. Thus, even at a α

significance level of 0.005, the null hypothesis that there is no correlation is rejected

and the alternative hypothesis that the correlation is positive is accepted. This shows

that there is a positive correlation between the number of Google search hits and the

average amount of TME received. Those email addresses with more search hits on

Google have more targeted malicious email sent to them. Table A.1 in Appendix A

lists all of the data for this analysis.

There are 2,379 unique job classes in the company. Not all individuals in the

company have ready access to email (e.g. manufacturing jobs) and thus they all do

not receive the same proportion of email. Table 4.16 shows the top 15 job classes

in the company which represent 34.77% of the total population. Comparing the

Table 4.16: Top 15 job classes, by population, in the company

Job Class % of population
Systems Engineering 10.00%
Software Engineering 5.75%
Program Management 2.32%

Embedded Software Engineering 2.00%
Mechanical Engineering 1.98%

Member Engineering Staff 1.58%
Multi Functional Finance 1.54%

Systems Integration & Test Engineering 1.51%
Quality Assurance Engineering 1.34%

Project Engineering 1.32%
Administrative Assistant 1.27%

Systems Integration 1.13%
Aeronautical Engineering 1.09%
Systems Administrator 1.02%
Electrical Engineering 0.94%

proportional amount of non-targeted malicious email (NTME) received by job classes

in data set NTME1 with the real job class population proportion (as shown in Table

4.16) reveals those job classes which proportionately receive more NTME than their

population proportion. Table 4.17 shows the fifteen largest job class proportion

differences between NTME and the actual population. In a sense, this list represents

the job classes which use email most disproportionately from their actual population
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proportion. For example, Employment Representatives which only account for 0.17% of

the employee population received 0.37% of email in the NTME1 data set. The Z value

and 99% lower bound confidence interval (one-tail) is calculated using the formulas in

section 4.3.1. If the null hypothesis is that the proportions are the same (e.g. p1 = p2),

then at the α=0.01 level of significance the Z-test statistic must be greater than 2.33

(one-tail) to accept the alternative hypothesis that p1 > p2. All of the Z values in Table

4.17 are greater than 2.33 thus the alternative hypothesis can be accepted for these

fifteen job classes. Additionally, all of the 99% lower bound confidence intervals are

greater than 0 which further confirms the significance of these proportion differences.

Several of the job classes which appear in Table 4.17 make sense given the type of

work performed by individuals in that job class. For example, business development,

subcontract administration, procurement and contracts negotiation individuals all

heavily use Internet-based email to coordinate with their respective business partners.

Comparing the proportional amount of spam received by job classes in the SP1 data

Table 4.17: Fifteen largest job class proportion
differences between NTME and actual population

Job Class p1 − p2 Z 99% CI LB
Program Management 1.83% 29.29 1.70%

Administrative Assistant 1.49% 29.67 1.39%
Systems Engineering 1.08% 10.24 0.83%

Business Development Analysis 0.99% 27.41 0.91%
Subcontract Administrator 0.72% 19.89 0.64%

Procurement Representative 0.49% 17.24 0.43%
Project Engineering 0.48% 11.09 0.38%
Systems Integration 0.39% 9.73 0.30%

Business Development 0.38% 15.16 0.33%
Employment Representative 0.37% 17.02 0.33%

IT Program 0.33% 15.59 0.29%
Computer Systems Architect 0.31% 9.83 0.24%

Multi Functional Finance 0.28% 6.38 0.18%
Contracts Negotiator 0.26% 9.17 0.20%

Member Engineering Staff 0.26% 5.86 0.16%

set with the proportional amount of NTME received by job classes in the NTME1

data set reveals those job classes which proportionately receive more spam than
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NTME. Table 4.18 shows the fifteen largest job class proportion differences between

spam and NTME. All of the Z values in Table 4.18 are greater than 2.33 thus the

alternative hypothesis can be accepted for these fifteen job classes. Additionally, all of

the 99% lower bound confidence intervals are greater than 0 which further confirms

the significance of these proportion differences. The individuals in the job classes

Table 4.18: Fifteen largest job class proportion
differences between spam and NTME

Job Class p1 − p2 Z 99% CI LB
International Licensing 1.22% 50.37 1.18%

Multi Functional Manufacturing 0.37% 20.11 0.33%
Network Monitoring Technician 0.36% 28.46 0.34%

Materials Support Team Member 0.31% 20.04 0.28%
Strategic Planner 0.30% 20.20 0.27%

Manufacturing Planner 0.27% 17.23 0.24%
Administrative Support 0.24% 9.81 0.18%

Technician 0.23% 12.67 0.19%
Computer Support 0.20% 10.89 0.16%

Engineering Planner 0.19% 8.10 0.14%
Systems Engineering Field Technical Support 0.19% 10.75 0.15%

Manufacturing Engineering 0.18% 7.04 0.12%
Material Handler 0.17% 13.16 0.15%

Aeronautical Engineering 0.17% 6.38 0.11%
Configuration 0.17% 8.64 0.13%

listed in Table 4.18 proportionately receive more spam than NTME. This may be

reflective of spam conducive computing practices employed by individuals in these job

classes (e.g. more sharing of their email address, signing up at websites). Comparing

the proportional amount of targeted malicious email (TME) received by job classes in

the TME1 data set with the proportional amount of NTME received by job classes

in the NTME1 data set reveals those job classes which proportionately receive more

TME than NTME. Table 4.19 shows the fifteen largest job class proportion differences

between TME and NTME. All of the Z values in Table 4.19 are greater than 2.33 thus

the alternative hypothesis can be accepted for these fifteen job classes. Additionally, all

of the 99% lower bound confidence intervals are greater than 0 which further confirms

the significance of these proportion differences. With a high degree of confidence, the
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true proportion difference between TME and NTME for the job classes listed in Table

4.19 is greater than the value listed in the column “99% CI LB”. The individuals in

Table 4.19: Fifteen largest job class proportion
differences between TME and NTME

Job Class p1 − p2 Z 99% CI LB
Business Development Analysis 4.67% 20.83 3.66%

Program Management 4.11% 11.25 2.94%
International Business Development 3.41% 38.82 2.62%

Communications 1.80% 17.51 1.19%
Business Development 1.58% 10.39 0.95%

Project Specialist 1.56% 12.79 0.97%
Mechanical Engineering 1.47% 5.59 0.68%

Software Engineering 1.29% 3.20 0.25%
Fellow 1.29% 11.78 0.75%

Electronics Engineering 1.24% 6.64 0.61%
Project Engineering 1.21% 4.99 0.49%

Research Engineering 1.06% 7.75 0.52%
Communications Representative 0.97% 9.45 0.50%

Research Scientist 0.78% 8.71 0.36%
Field Engineering 0.63% 5.76 0.21%

the job classes listed in Table 4.19 proportionately receive more TME than NTME. If

TME was no different than spam, then the proportional differences between TME and

NTME would be similar to the proportional differences between spam and NTME.

But, in fact, none of the job classes listed in Table 4.19 are listed in Table 4.18.

Additionally only 4 of the 15 job classes listed in Table 4.19 are listed in the top 15

job classes by population in Table 4.16.

The average number of recipients in specific business areas is another envelope

recipient characteristic that shows some differences between the TME1 and NTME1

data sets. Table 4.20 shows the average number of recipients per email in a specific

business area, µBA, and the standard deviation, σBA. For each business area, a t

statistic (Equation 4.13), and the degrees of freedom (Equation 4.14) is calculated.

Except for Business Area “A”, all of the other differences between the TME1 and

NTME1 data sets are significant at a α = 0.001 level of significance using a two-tailed

test. The 99.9% confidence intervals of the difference between means (Equation 4.15)
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supports the alternative hypothesis that the means are different.

Table 4.20: Envelope recipients by business area -
µBA(σBA)

Data set “A” “E” “E2” “I” “S”
TME1 0.189(0.556) 0.423(0.974) 0.172(0.466) 0.234(0.676) 0.307(0.720)

NTME1 0.195(0.483) 0.273(0.569) 0.118(0.383) 0.289(0.684) 0.164(0.511)
t -0.517 7.397 5.557 -3.895 9.532
df 2348 2329 2345 2361 2337

99.9% CI - -0.046 0.079 0.020 -0.104 0.091
99.9% CI + 0.034 0.221 0.088 -0.006 0.195

Examining the difference in the total number of valid envelope recipients in the

TME1 and NTME1 data sets also yields a significant result. Table 4.21 shows the

minimum, maximum, average and standard deviation of valid envelope recipients per

email in the TME1 and NTME1 data sets. With a α = 0.001 level of significance, the

average valid number of recipients in TME1 is greater than the average valid number

of recipients in NTME1.

Table 4.21: Total valid envelope recipients

Data set min max mean stddev
TME1 0 36 1.354 2.352

NTME1 0 100 1.109 0.982

t 5.008
df 2321

99.9% CI - 0.075
99.9% CI + 0.415

Looking at the average total number of invalid envelope recipients per email, in

Table 4.22 yields similar results as the average total number of valid envelope recipients.

With a α = 0.001 level of significance, the average invalid number of envelope recipients

in TME1 is greater than the average invalid number of envelope recipients in NTME1.

Ignoring the validity of a recipient email address, a significant difference still exists.

Table 4.23 shows the average total number of envelope recipients per email in the

TME1 and NTME1 data sets. With a α = 0.001 level of significance, the average
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Table 4.22: Total invalid envelope recipients

Data set min max mean stddev
TME1 0 15 0.165 1.155

NTME1 0 15 0.056 0.441

t 4.537
df 2320

99.9% CI - 0.025
99.9% CI + 0.193

total number of envelope recipients in TME1 is greater than the average total number

of envelope recipients in NTME1.

Table 4.23: Total envelope recipients

Data set min max mean stddev
TME1 1 50 1.544 3.547

NTME1 1 100 1.165 1.164

t 5.138
df 2318

99.9% CI - 0.122
99.9% CI + 0.636

Finally, examining the average job level for valid envelope recipients per email

shows that with a α = 0.001 level of significance, the average job level of valid envelope

recipients in TME1 is greater than the average job level of valid envelope recipients

in NTME1. Table 4.24 shows this result.

Table 4.24: Average job level of valid envelope recipients

Data set min max mean stddev
TME1 1 9 4.92 1.511

NTME1 1 10 3.938 1.638

t 31.089
df 2368

99.9% CI - 0.872
99.9% CI + 1.092

78



www.manaraa.com

From Header

In legitimate email, this field will contain the email address of the sender. In malicious

email, this field can be set to an arbitrary value by a threat actor (e.g. spoofed email

address). There are features that record whether the From address is advertised as

coming from one of several public webmail providers (e.g. Google, Yahoo, Hotmail).

There are also features that record whether the From address is advertised as coming

from some top-level domain names such as .mil (used by the United States Military)

or .gov (used by the United States Government). In an attempt to confuse users,

threat actors will sometimes falsify the From address as being from the organization

that is being targeted (e.g. sending an email spoofed “from” example.com to a

user in example.com). There is a feature that captures if the target company’s

domain name is used in the From address and if so, if the email address in the From

address is valid. Similar to the email character encodings, the From header can

also designate language specific character encodings, so those are also captured and

expressed as features. These are often associated with the threat actor’s locale. A final

set of features in this section are threat specific and have to do with abnormalities

discovered in the construction of the From header. The email address in the From

header actually consists of multiple parts, the address, the phrase (also known as a

Display Name), and the comment (Resnick, 2008). Manual analysis of the targeted

malicious email data set revealed numerous cases where the email address was simply

replicated in the phrase portion of the email address (e.g. “john.doe@example.com”

<john.doe@example.com>). This could be indicative of a procedure that some threat

actors consistently follow. There were also cases where threat actors were trying

to spoof legitimate US government or US military email addresses and wanted the

recipient email client to show a spoofed email address. For example, if the threat

actor used Google Gmail for sending the malicious email the From address looked

like “john.doe@agency.mil” <john.doe@gmail.com>. Gmail will only allow a user to

assign a non-Gmail From address if the user verifies ownership of that email address

via clicking on a link sent to that address. Since a threat actor may not control a
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desired email address, inserting the spoofed email address in the email phrase will

show that email address in the recipient email client. This is enough to confuse most

users into thinking the email legitimately originated from the spoofed email address.

Table 4.25 shows the proportion of several From header domains between the NTME1

and TME1 data sets. TME1 has a significantly greater proportion of emails with a

From header domain of gmail.com, .gov, yahoo.com and the company’s domain name

with invalid email address than NTME1 (Z -test, α = 0.01). TME1 has a significantly

smaller proportion of emails with a From header domain of aol.com, hotmail.com

and the company’s domain name. There is no statistically significant difference in

the proportion of From headers with .mil domain email addresses between TME1

and NTME1. If the email address in the From header is from the company, than

Table 4.25: From header by domain proportions in the
NTME1 and TME1 data sets

Data set aol gmail .gov hotmail .mil yahoo other
TME1 0.006 0.521 0.089 0.000 0.024 0.063 0.289

NTME1 0.015 0.029 0.028 0.012 0.027 0.029 0.845

Data set company company invalid
TME1 0.006 0.005

NTME1 0.015 0.001

the similarity score match is used to compare that advertised email address to all

email addresses in the company to see if there is a close match. The idea with this

feature is to uncover spoofed email addresses that are similar to legitimate email

addresses. The similarity score is obtained from a fulltext index search using MySQL

and summary statistics are shown in Table 4.26. Just as character encodings are

Table 4.26: From header similarity score match when the
domain is the company’s domain in the NTME1 and

TME1 data sets

Data set min max mean stddev
TME1 0 17.22 4.976 5.776

NTME1 0 40.28 4.866 5.676

part of email message bodies, they can be set in the From header as well. Table 4.27
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shows the proportional difference in big5 and gb2312 character encodings between the

TME1 and NTME1 data sets. TME1 has a significantly greater proportion of emails

with either the big5 or gb2312 character encodings (Z -test, α = 0.01). Table 4.28

Table 4.27: From header encodings in the NTME1 and
TME1 data sets

Data set big5 gb2312
TME1 0.016 0.010

NTME1 0.000 0.000

summarizes the results of From header phrase differences between the TME1 and

NTME1 data sets. TME1 has a greater proportion than NTME1 of emails with a

From header phrase, email addresses in the From header phrase, a .gov email address

in the From header phrase, a company email address in the From header phrase,

a .mil email address in the From header phrase, and the user of the From header

email address in the From header phrase (Z -test, α = 0.01). NTME1 has a greater

proportion than TME1 of emails where the From header phrase equals the From

header email address.

Table 4.28: From header phrases in the NTME1 and
TME1 data sets

Data set exists email .gov email company email
TME1 0.936 0.081 0.031 0.038

NTME1 0.878 0.027 0.000 0.015

Data set .mil email user of address equals address
TME1 0.003 0.066 0.002

NTME1 0.000 0.004 0.008
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Email list servers

Many users legitimately subscribe to Internet based email lists. Targeted malicious

emails are not generally sent through a large email list server for distribution, they are

sent directly to targeted recipients. Table 4.29 shows that NTME1 has a significantly

greater proportion of emails from email list servers than TME1 (Z -test, α = 0.01).

Table 4.29: Email list server proportions in the NTME1
and TME1 data sets

Data set From List Server
TME1 0.000

NTME1 0.236

Hyperlinks

In addition to attachments, the second primary vehicle for a threat actor to exploit a

user is via a malicious link included in an email that directs the user to a malicious

webpage that exploits a vulnerability on the user’s system. Analysis of the targeted

malicious email data set revealed threat actor preference for including links that direct

users to an executable file (.exe) or a compressed zip file (.zip). Often the .zip files

would include a malicious executable inside that the user would execute on behalf of

the threat actor, sometimes with no technical vulnerability being exploited other than

user vulnerability. TME1 had a greater proportion of emails with .zip hyperlinks than

NTME1 (Z -test, α = 0.01).

Table 4.30: Hyperlink proportions in the NTME1 and TME1 data sets

Data set exe htm zip
TME1 0.001 0.241 0.093

NTME1 0.015 0.453 0.010

Message-ID

Analysis of targeted malicious email revealed that a small percentage of TME emails

contained a fixed string in the Message-ID field. The Message-ID, which is automat-
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ically generated, is supposed to be a unique identifier for a given email. The exact

string is redacted here at the request of the data owner.

Table 4.31: Message-ID proportions in the NTME1 and TME1 data
sets

Data set “[t: redacted]”
TME1 0.011

NTME1 0.000

MIME Boundaries

Multipurpose Internet Mail Extensions, or MIME, is an Internet standard that defines

numerous extensions to standard email. These extensions support functionality such

as binary formatted attachments and emails with multiple parts. Sometimes email

clients insert MIME boundaries that are readily identifiable. Analysis of targeted

malicious email revealed many messages that included a specific MIME boundary

separator in the email. This specific MIME boundary is often associated with a

specific email client or tool that threat actors may be using to craft targeted malicious

email. Table 4.9 contains the exact MIME boundary string that is proportionally

more present in TME1 than NTME1 (Z -test, α = 0.01).

Table 4.32: MIME boundary counts and proportions in the NTME1
and TME1 data sets

Data set “2rfk”
TME1 389 (0.168)

NTME1 2 (0.000)

Received Line

As emails travel through the Internet to their destination, a Received header entry

is added by each email server that handles a message. False Received headers can

be added to email, which often occurs with spam. Sometimes a mail client on a

client computer sends email to a locally running mail server before sending it onto an

Internet based host. In this case, the host name of the computer running the local
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mail server may appear in the Received line. If threat actors are re-using a certain

computer with local mail server setup to send targeted malicious email it may be

possible to track the emails. The exact strings are redacted here at the request of the

data owner. These strings are present in a greater proportion of TME1 than NTME1

(Z -test, α = 0.01).

Table 4.33: Received line proportions in the NTME1 and
TME1 data sets

Data set “[s: redacted]” “[v: redacted]”
TME1 0.007 0.006

NTME1 0.000 0.000

Reply-To Header

The Reply-To header of an email defines the email address to send a return email

should a user decide to reply to an email. If no Reply-To is present, email clients

default to the email address in the From header. Threat actors will sometimes set

the Reply-To address to an email address in their control so that they can capture

any replies from users. Many users may not notice a change in email address when

replying to an email. This functionality allows a threat actor to spoof an email address

in the From header that may be familiar to the recipient while still controlling the

destination mailbox for replies. Also, if the email is purely spoofed and if the user

replies, the user might get an error from the invalid account or the real person saying

“I did not send this.” There are features that record whether the Reply-To exists,

whether, if present, it is equal to the From address, whether the Reply-To points to a

public webmail provider such as Hotmail or Gmail, and if the Reply-To address points

back to the company (to a valid or invalid address). In Table 4.34, the proportions for

the public webmail providers and company are with respect to those emails where a

Reply-To header exists. TME1 contains a greater proportion of email with a Reply-To

address from gmail, hotmail, yahoo or the company than NTME1 (Z -test, α = 0.01).
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Table 4.34: Reply-To header proportions in the NTME1 and TME1 data sets

Data set Exists 6= From gmail hotmail
TME1 0.410 0.032 0.878 0.064

NTME1 0.433 0.261 0.010 0.002

Data set yahoo company co. invalid other
TME1 0.017 0.018 0.018 0.023

NTME1 0.010 0.009 0.000 0.969

To Header

The To header of an email address shows the user which recipients received the email

message. The To header is for display in an email client and may or may not be the

same as the actual recipients recorded in the envelope recipient list of an email. Some

malicious emails have a To header defined but with no recipients listed (empty). Other

malicious emails only addressed public webmail provider email addresses in the To

header which means that the target company email addresses were included in the Bcc

(Blind Carbon Copy) field on the threat actor’s end. Still other emails do not have

anyone from the target company in the To line, which means those recipients were

possibly on Cc or Bcc. Email addresses that show up in the envelope recipient list

but not on the To or Cc line were emailed via Bcc. TME1 had a greater proportion

of email with an empty To line than NTME1 (Z -test, α = 0.01).

Table 4.35: To header proportions in the NTME1 and TME1 data sets

Data set Empty gmail hotmail yahoo no company
TME1 0.105 0.006 0.000 0.000 0.064

NTME1 0.020 0.006 0.001 0.003 0.134

X-Forwarded-To

The X-Forwarded-To header is used when a user has their email forwarded to an-

other account. For example, if someone forwards their hotmail.com email to their

example.com account, the forwarded email received at example.com may contain the

X-Forwarded-To header along with the target example.com email address. NTME1
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had a greater proportion of email with the X-Forwarded-To header than TME1 (Z -test,

α = 0.01).

Table 4.36: X-Forwarded-To header proportions in the NTME1 and
TME1 data sets

Data set Proportion
TME1 0.000

NTME1 0.006

X-Mailer Header

Many email clients leave identification in sent emails. Often, this identification is done

via the X-Mailer header. This is not a required field and not all emails include an

X-Mailer header but various features were extracted based on analysis of X-Mailer

headers in targeted malicious email. TME1 had a greater proportion of email with

“aspnet”, “blat”, “dreammail”, “extreme mail”, “foxmail”, “ghostmail” and “outlook

express” in the X-Mailer header than NTME1 (Z -test, α = 0.01).

Table 4.37: X-Mailer header proportions in the NTME1
and TME1 data sets

Data set aol aspnet blat dreammail extreme mail
TME1 0.004 0.055 0.005 0.004 0.006

NTME1 0.011 0.004 0.000 0.000 0.000

Data set foxmail ghostmail outlook express yahoomail
TME1 0.152 0.001 0.518 0.027

NTME1 0.000 0.000 0.016 0.032

4.4.5 Summary of feature differences

Table 4.38 summarizes key feature differences between TME and NTME emails. The

table outlines which features are more dominant in either type of email.
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Table 4.38: Key feature differences between TME1 and
NTME1 data sets

Feature TME NTME

Attachment 46% of TME, mostly .doc,
.pdf, .ppt.

9% of NTME, mostly .htm,
.xls

Cc Header empty Cc lines

Char Encodings base64, big5, gb2312 windows1252

Date Header Timezones: +0200, -0700,
+0800, +0900

Timezones: -0500, -0600, -
0800

DKIM Limited, mostly TME sent
using Google Mail

Signed

Email size Average: 276 KB Average: 95 KB

MIME Boundary “2rfk” present in
389 emails

Boundary “2rfk” present in
2 emails

Reply-To gmail, hotmail, yahoo, com-
pany

other

To empty To lines yahoo, no company

X-Mailer aspnet, blat, dreammail, ex-
treme mail, foxmail, outlook
express

aol, yahoomail

4.4.6 Features to Vectors

Table 4.9 listed the features that were extracted from all emails. These features were

either binary, numeric or categorical. If each feature is denoted as f , the number of

features as F , and the number of emails as N , then the set of features for a specific

email, E, can be represented as a vector θE = {f1, ...fF}. Figure 4.3 shows a graphical

depiction of how emails are represented as a vector of features.

4.5 Classification

According to Duda et al. (2000) pattern recognition is, “the act of taking in raw data

and making an action based on the ‘category’ of the pattern.” The objective of this

study was to create a system that can accept raw email and classify the email as
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θ
E1

 = {0,1,"+0800",15,1,...,0,12,1}

θ
E2

 = {1,1,"-0500",7,0,...,1,5,1}

...
θ
EN

 = {0,1,"+0100",3,1,...,0,14,1}

E1

E2

EN

General Form: θ
E

 = {f1,...,fF}

Emails Vector Representation of Emails

Figure 4.3: Feature representation of emails

belonging to either a category of “non-targeted malicious email” (NTME) or “targeted

malicious email” (TME). Figure 4.4 depicts the high level process for determining the

classification of a given email.

4.5.1 Random Forests

To separate “non-targeted malicious email” (NTME) from “targeted malicious email”

(TME), the random forest (Breiman, 2001) classifier was chosen. There are several

characteristics of this classifier that made it ideal for the data sets in this study: a) It

can handle a high number of features; b) It can handle a large number of emails; c)

It can handle a mixture of binary, numeric and categorical features; d) It generally

does not overfit13; e) It can handle missing features; f) The algorithm is trivially

parallelized to scale up for huge data sets; g) It can estimate which features are more

important than others; h) It can handle unbalanced data sets (e.g. training data that

consists of a much larger number of “non-targeted malicious email” than “targeted

malicious email”). In traditional decision tree classification algorithms each node

is split using the best split from all available features (where ‘best split’ provides

the most amount of separation in the data). With random forests, each node is

split using the best split from a randomly selected set of features at that node. In

13Overfitting is a situation where a classifier performs well on training samples but does not perform
well on new patterns
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email preprocessing feature extraction classification

directory

“NTME”

“TME”

Email An email with unknown classification.
Directory Corporate directory which includes information

about email users such as job title.
Preprocessing Email and directory information are combined to

provide additional recipient context to emails.
Feature Extraction Relevant features are extracted from the email and

converted into a multi-dimensional vector with
each element of the vector representing a feature.

Classification The email is processed through a classifier that
was trained with previously labeled data to deter-
mine the classification of the input email. “NTME”
corresponds to “non targeted, malicious” email
and “TME” corresponds to “targeted, malicious”
email.

Figure 4.4: Classification process

addition, multiple decision trees are created using bootstrap (random selection with

replacement) samples from the data set. These trees are created independently of

each other and a classification decision is reached by a simple majority vote from the

trees in the forest. The algorithm has two primary parameters k, the number of trees

in the forest, and m, the number of random features to consider for node splitting.

Details of the random forest algorithm can be found in Appendix B.

4.5.2 Types of Error

As seen in Figure 4.4, the final step in the classification process is for the classifier to

predict the classification given an input email. In this study, binary classification will

be performed such that emails will be classified as either “targeted malicious email”
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(TME) or “non-targeted malicious email” (NTME) where the category of primary

interest is targeted malicious email (TME). When the classifier correctly predicts a

known TME as TME that is known as a True Positive (TP). When the classifier

correctly predicts a known NTME as NTME that is known as a True Negative (TN).

In cases where the classifier predicts a known NTME as TME that is known as a False

Positive (FP) or Type I error. In cases where the classifier predicts a known TME as

NTME that is known as a False Negative (FN) or Type II error. Table 4.39 shows a

confusion matrix which is a visual representation of the different outcomes from the

classifier.

Table 4.39: Confusion Matrix

Actual TME Actual NTME
Predicted TME True Positive (TP) False Positive (FP)

Predicted NTME False Negative (FN) True Negative (TN)

The false positive rate (FPR) is the proportion of NTME emails that were incor-

rectly classified as TME. The specificity is equal to 1− fpr. The FPR is:

fpr =
FP

FP + TN
(4.21)

The false negative rate (FNR) is the proportion of TME emails that were incorrectly

classified as NTME. The sensitivity is equal to 1− fnr. The FNR is:

fnr =
FN

FN + TP
(4.22)

There is always a tradeoff between the false positive rate and false negative rate.

An increased false positive rate results in a decreased false negative rate and an

increased false negative rate results in a decreased false positive rate. These measures

of performance will be combined with others for a full set of metrics that will be used

to evaluate overall classifier performance.
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4.5.3 Cost Sensitive Learning and Classification

Turney (2000) provides an excellent overview of the different costs associated with

classification; the cost most relevant to this study is the cost of misclassification. There

is also a teacher cost associated with creating the data sets used in this study but since

it is a one-time cost with respect to this study, it will be ignored. A primary challenge

with the data sets used in this study are that they are imbalanced. The “targeted

malicious” class of email constitutes a minority of the data but it is the class of interest.

He and Garcia (2009) provides a good review of the current research into learning from

imbalanced data sets. According to Chen et al. (2004) there are two primary methods

to address the imbalance when using a Random Forest classifier. One is based on cost

sensitive learning where a high cost to misclassification of the minority class is assigned

and the classifier is trained to minimize total error cost instead of the total number

of errors. The second method, called stratification, is to use a sampling technique

where either the majority class is under-sampled or the minority class is over-sampled

or both. With imbalanced data sets either method improves performance over the

default Random Forest algorithm (Chen et al., 2004). Both Margineantu (2000) and

McCarthy et al. (2005) note improved classifier performance when using cost sensitive

learning instead of stratification particularly for large data sets. Therefore, the cost

sensitive classification method will be applied in this study to address the imbalanced

data sets.

MetaCost

In WEKA, cost sensitive learning can be implemented using MetaCost (Domingos,

1999). MetaCost creates an ensemble of cost sensitive classifiers based on a base

classifier, which in this study is Random Forest. Each one is based on a re-sample of

the original data (bootstrap aggregation or bagging).
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Cost model for targeted malicious email

The following section provides a conceptual framework for understanding the cost

model for targeted malicious email. This cost model is based on the operations, as

of this writing, of the company whose data is used in this study. The cost model

described in Lee et al. (2006) was used as a base but adapted for the case of targeted

malicious email (TME). Table 4.40 outlines the outcome costs associated with an email

filtering system focused on three scenarios: 1) detection of targeted malicious email

(TME-Detect), 2) blocking targeted malicious email (TME-Block), and 3) blocking of

spam (Spam-Block). There is no corresponding Spam-Detect since the spam system

is deployed only in a blocking configuration.

RCost is the response cost which varies based on the specific outcome and scenario.

In the True Positive (TP) outcome, the RCost associated with TME-Detect is greater

than the RCost associated with TME-Block since in a detect configuration a more

robust incident response is needed to follow up on the positive detection. With TME-

Block, the residual RCost is for gathering additional intelligence on the blocked email

to aid future detection. In the False Positive (FP) outcome the RCost associated

with TME-Detect, TME-Block and Spam-Block are the same since the cost to confirm

the legitimacy of an email is the same. Due to the increased fidelity, RCost in a

threat specific detection should be lower than RCost in a general detection since the

response analyst knows precisely what to look at to confirm or refute the outcome;

increased attribution of TME to specific threat actors would further drive down

RCost. Furthermore, the closer a detection is to the earlier stages of the threat kill

chain, the lower the RCost. Some organizations without good response mechanisms

may inadvertently set RCost to zero; organizations with a good security intelligence

capability realize that even true positives in a blocking-only configuration need to

have a response.

BICost is the business impact cost which is realized when a certain outcome

results in work stoppage or other form of business impact. With both TME-Block

and Spam-Block, the BICost is the same. One example is the cost of not receiving a
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business critical email (e.g. opportunity lost because of a blocked request for proposal

email) because it was blocked by the email filter.

DCost is the damage cost which is realized when the email filter does not correctly

detect or block a targeted malicious email. For example, this cost could be the loss of

intellectual property due to threat actor presence and subsequent data exfiltration

enabled by the malicious code in the targeted attack email. This cost could also be

fines based on government regulations surrounding the protection of certain types

of data. Perhaps more difficult to quantify, this cost can also encompass a loss of

reputation. In attack scenarios involving the loss of sensitive information, DCost

can be very high and is typically much higher than any RCost or BICost. In a

detection-only scenario an organization with a rapid response capability can have a

DCost of zero even with positive detection of TME.

Table 4.40: Conceptual cost model for various email filtering outcomes

Outcome TME-Detect TME-Block Spam-Block

TP RCost RCost 0
FP RCost BICost+RCost BICost+RCost
TN 0 0 0
FN DCost DCost UCost

UCost is the cost associated with the loss of user productivity stemming from

having to process an unwanted email. With spam, a false negative is a spam email

that is misclassified as a legitimate email resulting in the user having to process that

email manually.

When classifying conventional spam among non spam, the cost of a false positive

(FP) is generally greater than the cost of a false negative (FN). Many current studies on

email filtering focus on false positives being of greater importance than false negatives

(Delany et al., 2005; Sakkis et al., 2003; Zhang et al., 2004; Koprinska et al., 2007).

Specifically, if a non spam email is misclassified as spam (FP) that means that a

possibly legitimate email a user was expecting may end up being filtered into a “junk”

folder. However, if a spam email is misclassified as a non spam email (FN) that means

that the user may see an unwanted spam email in their inbox. Generally users do
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not want to miss legitimate email and are willing to handle a few misclassified spam

messages, so in this case the cost of a false positive is greater than a false negative.

When classifying targeted malicious email (TME) among non-targeted malicious

email (NTME), the classification costs are reversed due to the impact. A false negative

means a TME was misclassified as NTME. Since a single TME can result in threat

actor presence on a network, this false negative cost is much greater than the false

negative cost in the conventional spam scenario. Presumably as the level of attack

targeting and impact damage (DCost) associated with a TME increase, analysts and

organizations will have a greater tolerance for false positives due to a desire for fewer

false negatives. Conversely, a false positive means a NTME was misclassified as a

TME. With a detection-only filter (TME-Detect), false positives may be more tolerable

than with a protection (TME-Block) filter. In a business situation, a false positive

could result in a business critical email not being delivered to a user if the intervening

email filter is in block mode (vs. detection-only mode). Tool developers may be very

false positive adverse if the tool can only be used in a block mode. In this study, a

simplifying assumption is made that the costs for all false negatives are the same,

when in practice the cost of a false negative differs based on the specific email and

specific threat.

A useful analogy for the difference between the importance of false positives and

false negatives can be found at every airport in the United States. Airport security

screening is very much like detecting TME since the cost of a false negative (e.g.

terrorist getting on a plane) is much greater than the cost of a false positive (e.g.

unnecessarily screening a benign individual). Figure 4.5 breaks down the airport

security screening process. Airport security screening typically consists first of a high

sensitivity filter in the form of a metal detector followed by a highly specific manual

pat down if needed. A highly sensitive filter is designed to minimize false negatives,

and in the case of airport screening ensures that any possible suspected terrorist is

flagged up front. It is acceptable if some individuals are unnecessarily flagged since

the false negative cost is far greater than the false positive cost. If an individual passes

the metal detector, they are allowed to fly on the plane. If an individual does not pass
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Figure 4.5: Airport Analogy

the metal detector, they are typically subjected to a more in-depth manual pat down.

This second filter is designed to be highly specific, meaning that individuals who are

truly terrorists will be detected. To put everyone through a manual pat down would

result in even worse delays at the airport than we have today. The metal detector is a

very fast test but generates false positives. The manual pat down is very slow but

won’t generate false negatives. Combined, this scheme balances the need for speed

along with a need to reduce false negatives. When detecting TME, a multi-layer

detection approach can be employed in a similar manner to minimize false negatives.

A first layer would be highly sensitive and a slower more in-depth second layer would

focus on minimizing false negatives.

Since quantitative cost data for the outcomes in Table 4.40 are not available, this

study will focus on the ratio between false negatives and false positives. Table 4.41

outlines the false negative to false positive ratios for the outcomes in Table 4.40. For

the purposes of this study, since DCost can be very high given the seriousness of the

threat, the cost of false positives will be set to 1.0 and the cost for false negatives

will be set to 1.0 · λ. Thus the false negative to false positive ratio will be λ and this

will be varied over a range to demonstrate the effects of various misclassification cost

ratios. Table 4.42 shows a modified confusion matrix with costs associated with each

possible classification outcome.

One final consideration is that the proportion of spam to legitimate email is

significantly higher than the proportion of targeted malicious email to legitimate email.
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Table 4.41: False negative to false positive ratios

TME-Detect TME-Block Spam-Block

FN
FP = DCost

RCost
FN
FP = DCost

BICost+RCost
FN
FP = UCost

BICost+RCost

Table 4.42: Cost Sensitive Confusion Matrix

Actual TME Actual NTME
Predicted TME TP (1) FP (1)

Predicted NTME FN (λ) TN (1)

According to MessageLabs (2009), for the traffic they monitor, global spam accounted

for greater than 85 percent of all email at about 107 billion per day. In contrast, the

average number of targeted malicious emails was 48 per day. This underscores the

need for a cost sensitive approach for handling this imbalance.

4.5.4 Feature Importance and Cost

For every email a number of features are extracted and then supplied as input to

a classifier to determine the type of email. Not all of the features have the same

differentiating power to separate targeted malicious email from non-targeted malicious

email. In this study, the most important features will be identified and classifier

performance will be compared when using a full or reduced set of features. Practically,

each feature to be extracted from an email increases the computation time to convert

an email into its vector of features. This time in practice is minimal and does

not exceed the rate at which emails arrive at the company. However, there is a

software development and integration cost associated with extracting certain features.

Some features are more trivial than others to implement. For example, extracting a

recipient oriented feature such as the average number of Google search hits for all

valid recipients involves external information not available in the email itself. The

search hit information has to be extracted from Google in advance and exposed to the

feature extraction software tools via a database. Trying to query Google in real time

while extracting features from an email may introduce delay or confuse Google into
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thinking your system is automated bot (thus resulting in blocking of your IP address).

Therefore, an understanding of feature importance can help prioritize which features

are the most important to focus software development and integration effort.

In this study, feature importance will be measured using mean decrease Gini.

The mean decrease Gini measures the quality of a split in every node of the trees.

According to Breiman et al. (1984), for a two class problem such as in this study, the

Gini impurity, i, for a given node, t, is calculated by the following equation where

p(k|t) is the relative proportion of class k emails at node t:

i(t) = 2p(NTME|t)p(TME|t) (4.23)

The Gini index for a given feature is the sum over all trees in the forest of the decrease

in impurity after each split involving that feature. Averaging the Gini index across all

trees yields the mean decrease Gini. Every time a split of a node is made on a feature

the Gini impurity for the two descendent nodes is less than the parent node. The

higher the mean decrease Gini, the greater a feature’s importance.

4.5.5 Practical implementation

There are several practical considerations that have to made when implementing the

approaches in this study in an operational environment. First, the ability of a classifier

to detect targeted malicious email (TME) is related to the quality of features extracted

from emails. Aside from the recipient oriented features, the other features have to be

threat specific. Analysts have an array of tools at their disposal for detecting TME.

As new relevant features of email are identified, it is important that feature extraction

tools are updated to expose these new features to the classifier. As threat actors

modify their techniques over time, the features may vary in their ability to detect

TME. Regular review and update of features will help ensure maximum detection

ability.

Second, the recipient oriented features must be updated at periodic intervals. In

companies, employees are constantly hired, retired, fired or laid off. Individuals change
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jobs and get promoted. Therefore, it is important to keep the relevant recipient

oriented information up to date. Specifically, information mirrored from the company

directory service and also search hit counts from Google should be updated on a

periodic basis. Detection of targeted attacks requires targeted detection and as such

these features have to be created and updated specific to the organization or company

being targeted. Many features will translate from organization to organization but their

relative importance may vary depending on the specific threat profile and organization

population.

4.6 Evaluation

In this study, the primary research objective is to demonstrate that detection of

targeted malicious email is enhanced when using persistent threat and recipient

oriented features instead of conventional techniques. This section will describe the

conventional techniques used in this study, the methods used to optimize random

forest parameters, and the measures used to compare classifier performance.

4.6.1 Conventional Techniques

Common email filtering architectures include anti-spam filtering in addition to anti-

virus filtering. In this study, the conventional techniques used for comparison purposes

are Spamassassin and ClamAV. SpamAssassin14 is a popular open-source spam filtering

tool that largely uses email content for decision making. ClamAV15 is an anti-virus

toolset for Unix specifically designed for filtering email. Both tools will be executed

against experimental data sets to determine their ability to detect targeted malicious

email.

4.6.2 Parameter Optimization

As described in Section 4.5.1, the Random Forest classifier has two primary parameters:

k, the number of trees in the forest, and m, the number of random features to consider

14The Apache SpamAssassin Project - http://spamassassin.apache.org/
15ClamAV - http://www.clamav.net/
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for node splitting. In this study, these two parameters will be varied to maximize

classifier performance. There is no standard for determining the optimal k and m

values. Research by Khoshgoftaar et al. (2007) indicates that a value of k = 100

and m = log2M + 1, where M is the total number of features available, is a starting

guideline. Hastie et al. (2008) suggest that m =
√
M is a reasonable default value. As

described in Section 4.5.3, there is a cost difference between false negatives and false

positives. Thus the false negative, false positive ratio, λ, will be varied to understand

the effect on classifier performance.

4.6.3 Measuring Classifier Performance

This section will describe the metrics to evaluate the performance of classifiers in this

study. Androutsopoulos et al. (2000b) outlines measures to evaluate classification

performance when filtering spam and non spam email. However, the calculations

assume that false positives are more costly than false negative. However, in section

4.5.3 a conceptual model was presented for targeted malicious email (TME) where

false negatives were more costly than false positives. New performance measures

adjusted for TME follow.

Let NNTME and NTME be the total numbers of non-targeted malicious email

and targeted malicious email, respectively, and nY→Z the number of emails belong-

ing to classification Y that the classifier classified as belonging to classification Z

(Y, Zε{NTME, TME}). This can be related to the outcomes described above as

follows:

nTME→TME = TP (4.24a)

nNTME→NTME = TN (4.24b)

nTME→NTME = FN (4.24c)

nNTME→TME = FP (4.24d)

NTME = TP + FN (4.24e)

NNTME = TN + FP (4.24f)
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NNTME +NTME = TP + TN + FN + FP (4.24g)

Accuracy ( Acc ) is the number of correct classifications as a percentage of total

classifications:

Acc =
nTME→TME + nNTME→NTME

NTME +NNTME

=
TP + TN

TP + FN + TN + FP
(4.25)

The error rate ( Err = 1− Acc ) is:

Err =
nTME→NTME + nNTME→TME

NTME +NNTME

=
FN + FP

TP + FN + TN + FP
(4.26)

These two measures, however, assign equal weights to the false positive (NTME →

TME) and false negative (TME → NTME) errors. As established in section 4.5.3,

TME → NTME is λ times more costly than NTME → TME. Accuracy and error

rate can be made sensitive to this cost differential by treating each TME as if it were

λ emails. This adjustment results in the following definition of weighted accuracy

(WAcc) and weighted error rate (WErr = 1−WAcc):

WAcc =
λ · nTME→TME + nNTME→NTME

λ ·NTME +NNTME

=
λ · TP + TN

λ(TP + FN) + TN + FP
(4.27)

WErr =
λ · nTME→NTME + nNTME→TME

NTME +NNTME

=
λ · FN + FP

λ(TP + FN) + TN + FP
(4.28)

For comparison purposes, the classifier will be compared to a “baseline” approach

where no filter is present. The absence of a filter means that non-targeted malicious

emails are, correctly, not detected and targeted malicious emails are, incorrectly,

not detected. The weighted accuracy (WAccb) and weighted error rate (WErrb =

1−WAccb) of this baseline are:

WAccb =
NNTME

NNTME + λ ·NTME

=
TN + FP

TN + FP + λ(TP + FN)
(4.29)

WErrb =
λ ·NTME

NNTME + λ ·NTME

=
λ(TP + FN)

TN + FP + λ(TP + FN)
(4.30)
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A ratio between the baseline weighted error rate (WErrb) and the weighted error

rate (WErr), called the Total Cost Ratio (TCR), allows the performance of a classifier

to be compared to a baseline (no classifier) approach:

TCR =
WErrb

WErr
=

NTME

nNTME→TME + λ · nTME→NTME

=
λ · (TP + FN)

FP + λ · FN
(4.31)

Greater TCR values indicate better performance. If TCR <1, using no classifier

is better than using the classifier. An intuitive definition of TCR follows: TCR

measures the time and cost associated with responding to an incident due to a TME

delivered to a user (NTME), compared to the time needed for an analyst to review an

email mistakenly flagged as TME (nNTME→TME) plus the time and cost associated

with responding to an incident due to a TME mistakenly classified as a NTME

(nTME→NTME). A higher TCR means a greater portion of an organization’s response

is dedicated to true incidents rather than errors.

With an imbalanced data set, Accuracy ( Acc ) can be misleading. For example,

a classifier running against a data set with 95% non-targeted malicious email and

5% targeted malicious email can be 95% accurate if it simply identifies all email as

non-targeted malicious. Thus, sometimes it is beneficial to look at the two classes of

email separately.The True Positive Rate, TPR, sometimes referred to as sensitivity,

describes how well the classifier recognizes all targeted malicious email.

TPR = sensitivity =
nTME→TME

nTME→TME + nTME→NTME

=
TP

TP + FN
(4.32)

The True Negative Rate, TNR, sometimes referred to as specificity, describes how well

the classifier recognizes all non-targeted malicious email.

TNR = specificity =
nNTME→NTME

nNTME→NTME + nNTME→TME

=
TN

TN + FP
(4.33)

The False Positive Rate, FPR, is the proportion of non-targeted malicious emails that
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were incorrectly classified as targeted malicious emails.

FPR = 1− specificity =
nNTME→TME

nNTME→NTME + nNTME→TME

=
FP

TN + FP
(4.34)

The False Negative Rate, FNR, is the proportion of targeted malicious emails emails

that were incorrectly classified as non-targeted malicious emails.

FNR = 1− sensitivity =
nTME→NTME

nTME→TME + nTME→NTME

=
FN

TP + FN
(4.35)

Precision describes how well the classifier correctly identifies a targeted malicious

email when it classifies an email as being targeted malicious.

precision =
nTME→TME

nTME→TME + nNTME→TME

=
TP

TP + FP
(4.36)

A 100% highly sensitive classifier will correctly identify all targeted malicious email

but in the process may incorrectly identify some emails that are not targeted malicious

emails (false positives). In contrast, a 100% highly specific classifier will correctly

identify all non-targeted malicious email but in the process may incorrectly identify

some targeted malicious email. For the purposes of detecting targeted malicious email,

a high sensitivity at the risk of having a lower specificity is desired.

Supervised classification involves training a classifier, in this study Random Forest,

with pre-labeled emails and then executing the classifier against a test data set. In this

study, two test methods will be used: 10-fold cross validation and independent test

data. In a m-fold cross validation, the data set is divided randomly into m disjoint

subsets of equal size n/m, where n is the number of emails in the data set. The

classifier is then trained m times, each time withholding one set for testing. Errors

are averaged across these m executions of the classifier (Duda et al., 2000). With an

independent test data set, one data set will be used for training and a completely

separate data set will be used for testing. None of the test samples will be in the

training data set.
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4.6.4 Summary of Analysis Procedures

The totality of analysis procedures from raw data to results are summarized in the

steps below:

1. Data collection and feature extraction - The emails used in this research were

collected using the tools outlined in Section 4.2.1. Raw emails were processed

using Perl scripts and the features as described in Section 4.4.3 were extracted

from those emails. Output files for TME and NTME email were created listing

a unique identifier for each email along with the feature vector (as described

in Section 4.4.6) for each email. The output files are formatted using the

attribute-relation file format (ARFF) which is a format commonly used by data

classification tools. As part of the email features, various characteristics of the

email recipients were also recorded.

2. Supervised classifier training - Once the data sets were created, the next step

was to train the random forest classifier. This was performed using the WEKA

tool as outlined in Section 4.2.1. The WEKA tool imports the training data set

into its database. The training emails are labeled which allows the classifier to

associate certain features with either TME or NTME.

3. Classifier testing - Once the training data set is loaded, WEKA allows an

analyst to execute the newly created classifier against a test data set. In this

dissertation, two test data sets are used: the NTME1-TME1 data set is used in

a cross-validation approach (Section 4.6.3) and the TS1 data set is used as a

completely independent test set). WEKA takes each test email, runs it through

the random forest and categorizes each email as either TME or NTME. The

correct classification of all emails is known so WEKA is able to determine how

many true positives, true negatives, false positives and false negatives result.

4. Optimization - In this research, there are two types of optimization. The first

accounts for the difference in cost between false negatives and false positives.

As outlined in Section 4.5.4 the classifier is trained assuming the cost of false
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negatives and false positives are equal. Subsequent trainings set the cost of

false negatives at a multiple of false positives. This cost differential forces the

classifier to avoid making one type of error over another. The second optimization

accounts for the random forest classifier itself. The random forest classifier, as

outlined in Section 4.5.1 has two parameters. These two parameters are varied to

see how the classifier performs with respect to false negatives and false positives.

5. Evaluation - The optimized random forest classifiers are then compared to con-

ventional email filtering techniques to understand the difference in performance.
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Chapter 5: Evaluation

This chapter presents the results of executing the methods outlined in this study.

First, the Random Forest algorithm will be used to determine the importance of

the features outlined in Table 4.9. Second, newer approaches as outlined in this

study will be used to filter out targeted malicious email from different data sets. The

newer approaches will be analyzed with respect to various configuration parameters

to maximize detection strength. These newer approaches will also be compared to

conventional techniques to determine if there is an overall improvement.

5.1 Feature Importance

Table 4.9 lists a total of 83 features used to represent each email through the classifica-

tion process. These features are not equal with respect to classification strength; some

features over others provide greater separation between targeted malicious email and

non-targeted malicious email. From a practical implementation perspective, extracting

the fewest number of features necessary is easier to implement and faster to process.

Therefore, the fewest number of features that still achieves the desired classification

strength is ideal. As described in section 4.5.4, the Random Forests algorithm supports

calculating feature importance. Figure 5.1 shows the output of calculating feature

importance using the NTME1-TME1 data set; only the twenty-five most important

features are shown.
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Figure 5.1: Feature Importance Using Mean Decrease Gini: The twenty-five most important features
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Using the Mean Decrease Gini measure, the top twenty-five features are shown in

Table 5.1.

Table 5.1: Top twenty-five features based on Mean Decrease Gini

Feature Gini
envelope recipients valid avg num tme received 797.14

date header timezone 644.36
x mailer outlook express 270.66

email size 259.79
from domain gmail 166.35

reply to gmail 152.97
envelope recipients valid avg google search count 107.81

char encoding base64 81.5
char encoding gb2312 73.51

link zip 49.78
mime boundary 2rfk 46.65

attachment pdf 40.57
from domain company similarity 38.07

attachment 38.03
x mailer foxmail 37.6
reply to defined 23.54

link htm 20.79
from listserv 20.13

dkim header defined 19.91
envelope recipients valid avg job level 18.11

x mailer aspnet 17.96
attachment doc 16.66

from domain gov 13.13
reply to from address notequal 13.13

from header phrase exists 12.15

5.2 Random forest classifier against the NTME1-TME1 data set

This section presents the results of processing the NTME1-TME1 data set using an

optimized random forest classifier. First, conventional techniques will be assessed.

Second, the random forest parameters will be optimized. Third, a cost sensitive

random forest classifier will be assessed. Fourth, features will be successively reduced

to determine how classification strength degrades with fewer and fewer features

included in the random forest model. Finally, statistical tests will be conducted to
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compare newer and conventional techniques. As described in Section 4.6.3, a 10-fold

cross validation test method is used.

5.2.1 Conventional email filtering techniques

Two popular, conventional email filtering tools were applied against the NTME1-TME1

data set, SpamAssassin and ClamAV. The following sections present the results of

using these tools.

SpamAssassin

SpamAssassin was configured using the stock distribution of heuristics with no bayesian

learning for email body content. Each heuristic in SpamAssassain has a score associated

with it. Some scores are positive and some scores are negative depending on whether

the heuristic is detecting a negative or positive attribute, respectively. By default,

an email with a score over 5.0 is flagged as Spam. Table 5.2 contains the results of

executing SpamAssassin against the TME1 data set (reference Table 4.3). The false

negative rate is calculated using Equation 4.22. Table 5.3 lists all of the heuristics

Table 5.2: Results of running
SpamAssassin against the TME1 data set

Outcome # Emails
True Positives (TP) 626
False Negatives (FN) 1689

Total Emails 2315
False Negative Rate 0.73

that matched for emails in the TME1 data set. A number of the heuristics are related

to the body content of the email but a few are similar to features extracted for this

study, such as base64 encoding. More than half of the True Positive detections are

due to a heuristic that looks for an invalid Message-ID.
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Table 5.3: Number of emails from the TME1 data set that matched SpamAssassin heuristics

# Emails Score Heuristic Description

1 0.0 HS INDEX PARAM URL Link contains a common tracker pattern.

1 0.0 HTML SHORT LINK IMG 1 HTML is very short with a linked image

1 0.0 UPPERCASE 50 75 Message body is 50-75% uppercase

1 0.1 HTTP ESCAPED HOST URI Uses %-escapes inside a URL’s hostname

1 1.1 WEIRD PORT URI Uses non-standard port number for HTTP

1 1.4 WEIRD QUOTING BODY Weird repeated double-quotation marks

1 1.5 DATE IN FUTURE 03 06 Date: is 3 to 6 hours after Received: date

1 1.5 HTTP EXCESSIVE ESCAPES URI Completely unnecessary %-escapes inside

1 1.9 HTML IMAGE ONLY 04 BODY HTML: images with 0-400 bytes of words

1 4.2 TVD STOCK1 BODY Message looks like its pushing a stock

2 0.0 FORGED OUTLOOK HTML Outlook can’t send HTML message only

2 0.0 HTML MESSAGE BODY HTML included in message

2 0.0 HTML MIME NO HTML TAG HTML-only message, but there is no HTML tag

2 0.1 FORGED OUTLOOK TAGS Outlook can’t send HTML in this format

2 1.9 MIME HTML ONLY BODY Message only has text/html MIME part

2 2.9 RCVD ILLEGAL IP Received: contains illegal IP address

3 1.2 MIME HEADER CTYPE ONLY ’Content-Type’ found without required MIME

6 3.0 TVD RCVD SINGLE Received: line contains localhost as a server name

Continued on next page. . .
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Table 5.3 – Continued

# Emails Score Heuristic Description

7 1.5 DATE IN PAST 06 12 Date: is 6 to 12 hours before Received: date

7 1.7 MIME BASE64 TEXT RAW Message text disguised using base64 encoding

7 1.8 HS FORGED OE FW Outlook does not prefix forwards with ”FW & ”

7 3.2 FROM LOCAL NOVOWEL From: localpart has series of non-vowel letters

9 0.0 UNPARSEABLE RELAY Informational message has unparseable relay line

9 3.0 FORGED MUA OUTLOOK Forged mail pretending to be from MS Outlook

10 0.1 MISSING MIMEOLE Message has X-MSMail-Priority, but no X-MimeOLE

10 1.9 SUBJ ALL CAPS Subject is all capitals

11 0.0 NORMAL HTTP TO IP URI Uses a dotted-decimal IP address in URL

11 0.1 RDNS DYNAMIC Delivered to trusted network by host with Dynamic DNS

11 1.5 FH HOST EQ PACBELL D Host is pacbell.net dsl

11 1.5 MSGID FROM MTA HEADER Message-Id was added by a relay

11 1.6 FROM EXCESS BASE64 From base64 encoded unnecessarily

11 2.9 HTTPS IP MISMATCH BODY IP to HTTPS link found in HTML

12 3.3 RCVD BAD ID Received: header contains a badly formatted ID parameter

13 0.0 UNPARSEABLE RELAY Informational message has unparseable relay lines

16 1.3 MSOE MID WRONG CASE Incorrect Message-ID label for Outlook Express

16 1.7 DEAR SOMETHING BODY Contains ’Dear (something)’

Continued on next page. . .
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Table 5.3 – Continued

# Emails Score Heuristic Description

21 1.4 DIET 1 BODY Lose Weight Spam

21 1.5 MISSING HEADERS Missing To: header

21 2.9 DC GIF UNO LARGO Message contains a single large inline gif

25 0.1 RDNS NONE Delivered to trusted network by a host with no reverse DNS

29 0.7 HTML FONT FACE BAD BODY HTML font face is not a word

35 1.3 DATE IN PAST 03 06 Date: is 3 to 6 hours before Received: date

38 0.0 MIME HTML ONLY MULTI Multipart message only has text/html MIME parts

38 1.4 PLING QUERY Subject has exclamation mark and question mark

72 0.1 FORGED OUTLOOK TAGS Outlook can’t send HTML in this format

75 0.0 FORGED OUTLOOK HTML Outlook can’t send HTML message only

77 0.0 HTML MIME NO HTML TAG HTML-only message, but there is no HTML tag

79 3.0 BASE64 LENGTH 79 INF Base64 should only be 76 chars long

100 3.0 FORGED MUA OUTLOOK Forged mail pretending to be from MS Outlook

103 1.5 MPART ALT DIFF BODY HTML and text parts are different

130 1.9 MIME HTML ONLY BODY Message only has text/html MIME parts

143 1.7 MIME BASE64 TEXT RAW Message text disguised using base64 encoding

327 2.3 TVD SPACE RATIO BODY High ratio of spaces to non-spaces

331 2.9 MSGID OUTLOOK INVALID Message-Id is fake (in Outlook Express format)

Continued on next page. . .
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Table 5.3 – Continued

# Emails Score Heuristic Description

494 0.0 HTML MESSAGE BODY HTML included in message
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Executing SpamAssassin against the NTME1 data set provides little value as any

positives reported by SpamAssassin may be Spam, not TME false positives. Thus,

to calculate a Total Cost Ratio (TCR) for SpamAssassin against the NTME1-TME1

data set, a false positive count of 0 and true negative count of 20, 894 (see Table 4.2)

is used. Table 5.4 shows the TCR for SpamAssassin. The TCR does not change for

increasing λ since there are no false positives. Assuming a false positive count of 0, 1.37

is the highest TCR SpamAssassin can achieve given its high false negative rate. To

Table 5.4: SpamAssassin Total Cost Ratio for
NTME1-TME1 data set

Outcome # Emails
True Positives (TP) 626
False Negatives (FN) 1689
False Positives (FP) 0
True Negatives (TN) 20,894

Total Cost Ratio for λ=1,2,10,100 1.37

see how SpamAssassin handles NTME and TME differently, executing SpamAssassin

against the NTME1 data set results in 4,221 emails flagged as Spam. Out of a total

of 20,894 emails in the NTME1 data set, that means that SpamAssassin had a 20.2%

positive detection rate. This compares to the 27.0% positive detection rate (see Table

5.2) from executing SpamAssassin against the TME1 data set. Comparing these

two proportions using a Z -test for proportions (see Section 4.3.1) results in a Z test

statistic value of 7.68 which means that at the alpha=0.01 level of significance, you

can accept the alternative hypothesis that the positive detection rate of SpamAssassin

with the TME1 data set is greater than the NTME1 data set.

ClamAV

ClamAV was configured using the stock distribution with a virus definition file as

of January 18, 2010 (the last TME in the NTME1-TME1 data set was received

December 19, 2009). Since ClamAV is an anti-virus tool its primary purpose in this

study is to detect malicious software embedded within emails, most often in the form
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of file attachments. In the TME1 data set, there are 1,065 emails with at least one

attachment. Table 5.5 contains the results of executing ClamAV against the TME1

data set (reference Table 4.3). The false negative rate is calculated using Equation

4.22. A similar situation as SpamAssassin exists when considering the execution of

Table 5.5: Results of running ClamAV against the TME1
data set

Outcome # Emails
True Positives (TP) 223
False Negatives (FN) 2,092

Total Emails 2315
Total Emails with Attachment 1065
False Negative Rate 0.90
False Negative Rate (attachment
only)

0.79

ClamAV against the NTME1 data set. Any positives reported by ClamAV in the

NTME1 data set may be malicious in nature, not targeted malicious email (TME)

but standard Internet worms and viruses that should be filtered in an email system.

Thus, assigning a false positive count of 0 to ClamAV will yield the maximum TCR

for ClamAV given its false negative rate. Table 5.6 shows the TCR for ClamAV.

The TCR does not change for increasing λ since there are no false positives. With

a false positive count of 0, 1.11 is the highest TCR ClamAV can achieve given its

high false negative rate. To see how ClamAV handles NTME and TME differently,

Table 5.6: ClamAV Total Cost Ratio for NTME1-TME1
data set

Outcome # Emails
True Positives (TP) 223
False Negatives (FN) 2,092
False Positives (FP) 0
True Negatives (TN) 20,894

Total Cost Ratio for λ=1,2,10,100 1.11

executing ClamAV against the NTME1 data set results in 2,097 emails flagged as
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malicious. Out of a total of 20,894 emails in the NTME1 data set, that means that

ClamAV had a 10.0% positive detection rate. This compares to the 9.6% positive

detection rate (see Table 5.5) from executing ClamAV against the TME1 data set.

Comparing these two proportions using a Z -test for proportions (see Section 4.3.1)

results in a Z test statistic value of 0.61 which means that even at the alpha=0.05

level of significance, you are not able to reject the null hypothesis that the positive

detection rate of ClamAV with the TME1 data set is different than the NTME1 data

set. This could indicate that ClamAV treats TME and NTME the same and does not

have a strong differentiating capability between the two.

SpamAssassin+ClamAV combined

Email filtering regimes in organizations will often consist of two stages: spam filtering

and anti-virus filtering. To determine the joint detection power of the two conventional

methods, email from the TME1 data set was passed first through SpamAssassin and

then through ClamAV to determine the aggregate ability to detect TME. Some emails

slip past SpamAssassin but are detected by ClamAV resulting in a positive detection

for the joint capability. After processing the TME1 data set with SpamAssassin,

626 emails were correctly detected and 1,689 emails were missed. Passing those

remaining 1,689 through ClamAV resulted in 131 additional detections. At the end,

1,558 TME emails were left undetected resulting in a 67% false negative rate for

the joint SpamAssassin+ClamAV method. Table 5.7 summarizes the results. Again,

Table 5.7: Results of running
SpamAssassin+ClamAV against the

TME1 data set

Outcome # Emails
True Positives (TP) 757
False Negatives (FN) 1,558

Total Emails 2315
False Negative Rate 0.67

assuming no false positives for SpamAssassin+ClamAV, the TCR for this method is
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1.49. Table 5.8 summarizes these results.

Table 5.8: SpamAssassin+ClamAV Total Cost Ratio for
NTME1-TME1 data set

Outcome # Emails
True Positives (TP) 757
False Negatives (FN) 1,558
False Positives (FP) 0
True Negatives (TN) 20,894

Total Cost Ratio for λ=1,2,10,100 1.49

5.2.2 Random forest parameter optimization

As described in Section 4.5.1, the Random Forest classifier has two primary parameters:

k, the number of trees to use in the forest, and m, the number of random features to

consider for node splitting. This section compares the results of varying these two

parameters. Figure 5.2 shows Total Cost Ratio (TCR) graphs for varying number of

trees when using increasing subsets of features for node splitting. Time to model a

random forest increases as the number of trees increase but since this is a one-time

cost it is ignored. From a practical standpoint, new random forest models can be built

whenever there are new email samples to justify creating a new model.

A λ=1 means the cost of a false positive and false negative is the same. However,

as described with the cost sensitive evaluation in Sections 4.5.3 and 4.6.3, λ can be

increased to change the cost ratio between false negatives and false positives. Assuming

false negative and false positive misclassification costs are equal, the Random Forest

has the highest TCR of 92.60 with k = 500 and m = 15. With large forest sizes, TCR

is relatively stable even as more features are used for node splitting. Assuming false

negatives cost twice as much as false positives, the Random Forest has the highest

TCR of 105.23 with k = 50 and m = 20 or m = 30. Assuming false negatives cost ten

or one-hundred times as much as false positives, the Random Forest has the highest

TCR of 141.16 and 152.91, respectively, with k = 50 and m = 30. A random forest

with parameters k = 50 and m = 30 will be used for comparison purposes when
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Figure 5.2: Total cost ratio optimization for random forest using the NTME1-TME1
data set (continued...)
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Figure 5.2: Total cost ratio optimization for random forest using the NTME1-TME1
data set (continued...)

118



www.manaraa.com

 0

 20

 40

 60

 80

 100

 120

 140

 0  10  20  30  40  50  60  70  80

To
ta

l C
os

t R
at

io
 (T

C
R

)

Number of Features

NTME1-TME1: Total Cost Ratio (TCR), k=250, =1,2,10,100

=1
=2

=10
=100

(e) TCR at k=250, λ=1,2,10,100

 0

 20

 40

 60

 80

 100

 120

 140

 0  10  20  30  40  50  60  70  80

To
ta

l C
os

t R
at

io
 (T

C
R

)

Number of Features

NTME1-TME1: Total Cost Ratio (TCR), k=500, =1,2,10,100

=1
=2

=10
=100

(f) TCR at k=500, λ=1,2,10,100

Figure 5.2: Total cost ratio optimization for random forest using the NTME1-TME1
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analyzing the NTME1-TME1 data set. The full data for random forest parameter

optimization for the NTME1-TME1 data set is available in Appendix C.1.

5.2.3 Cost sensitive learning

In Section 4.5.3 cost sensitive learning and classification techniques were outlined that

account for the difference in cost between a false positive and false negative. Table 5.9

shows the results of processing the NTME1-TME1 data set through a random forest

classifier using the parameters optimized in the previous section (k = 50, m = 30).

Several executions are done, each time with a different false negative, false positive

cost ratio (λ) for the learning process. Evaluation is still done considering the cost

difference between false negatives and false positives. The full data for cost sensitive

learning for the NTME1-TME1 data set is available in Appendix C.2. Making false

Table 5.9: Summary of cost sensitive learning for the
NTME1-TME1 data set with k = 50, m = 30

cost ratio TCR, λ = 1 TCR, λ = 2 TCR, λ = 10 TCR, λ = 100
λ = 1 79.83 105.23 141.16 152.91
λ = 2 66.14 90.78 129.33 142.99
λ = 10 48.23 77.17 148.40 187.30
λ = 100 8.61 16.96 75.90 348.12

negatives twice the cost of false positives in the learning process actually decreased

the overall total cost ratio (TCR). An additional false negative and 5 more false

positives were generated. However, when increasing λ, the TCR improved. With

false negatives costing one-hundred times false positives, only 4 false negatives were

generated. However, this came at a cost of 265 false positives (1.27%). Organizations

would need to evaluate whether the increased true positive detection strength is worth

the increased false positives. Increasing false positives too high can lead to analyst

desensitization.

5.2.4 Feature reduction

In this section the number of features available for classification is successively reduced

to show how the false negative performance degrades. The full data is available in
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Appendix C.3. Figure 5.3 shows how the false negative rate degrades as successively

fewer features, by order of decreasing importance, are included in the random forest

classifier. More than the top 20 features have to be removed from the random forest

classifier before the false negative performance is equal to SpamAssassin+ClamAV.

Figure 5.4 shows how the false negative rate degrades as successively fewer features, by
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Figure 5.3: Feature reduction for the NTME1-TME1 data set - Removing features in
order of decreasing importance

order of increasing importance, are included in the random forest classifier. Even with

just one feature available for classification, the random forest classifier outperforms

SpamAssassin, ClamAV and SpamAssassin+ClamAV. The full data is available in

Appendix C.4

5.2.5 Comparing false negative rates between two detection methods

Section 4.3.3 described how to compare if two detection methods differ significantly

in ability to detect targeted malicious email. Table 5.10 shows the contingency table

for the random forest based classifer developed in this study against SpamAssassin.

This table summarizes the TME detection ability difference between the two methods.
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Using Equation 4.17 the χ2 test statistic is 1,662.1 which is greater than the critical

Table 5.10: NTME1-TME1 : Contingency Table for TME
detection between Random Forest and SpamAssassin

RF-Correct RF-Error
SpamAssassin-Correct 621 5
SpamAssassin-Error 1,679 10

value of 6.635 at the α = 0.01 level of significance. This means the null hypothesis that

the two detection methods are the same in the ability to detect targeted malicious email

is rejected. Table 5.11 shows the contingency table for Random Forest vs. ClamAV.

The χ2 test statistic is 2,073.00 which is greater than the critical value of 6.635 at the

α = 0.01 level of significance. This means the null hypothesis that the two detection

methods are the same in the ability to detect targeted malicious email is rejected.

Table 5.12 shows the contingency table for Random Forest vs. SpamAssassin+ClamAV.

The χ2 test statistic is 1,541.1 which is greater than the critical value of 6.635 at the

α = 0.01 level of significance. This means the null hypothesis that the two detection
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Table 5.11: NTME1-TME1 : Contingency Table for TME
detection between Random Forest and ClamAV

RF-Correct RF-Error
ClamAV-Correct 222 1
ClamAV-Error 2,078 14

Table 5.12: NTME1-TME1 : Contingency Table for TME
detection between Random Forest and

SpamAssassin+ClamAV

RF-Correct RF-Error
SpamAssassin+ClamAV-Correct 742 5
SpamAssassin+ClamAV-Error 1,558 10

methods are the same in the ability to detect targeted malicious email is rejected.

In summary, the random forest classifier with persistent threat and recipient

oriented features outperformed conventional techniques such as SpamAssassin and

ClamAV. The random forest classifier was able to achieve a false negative rate of 0.6%

with only a 0.1% false positive rate.

5.3 Random forest classifier against the TS1 data set

This section presents the results of processing the TS1 data set using an optimized

random forest classifier. The classifier is trained using the NTME1-TME1 data

set and then tested using the TS1 data set. This is important since the TS1 and

NTME1-TME1 are independent: there are no emails from the TS1 data set in the

NTME1-TME1 data set. This helps establish the classifier’s ability to detect TME

completely outside of the training data set.

First, conventional techniques will be assessed. Second, the random forest pa-

rameters will be optimized. Third, a cost sensitive random forest classifier will be

assessed.
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5.3.1 Conventional email filtering techniques

SpamAssassin

Table 5.13 contains the results of executing SpamAssassin against the targeted ma-

licious emails in the TS1 data set (reference Table 4.6). The false negative rate is

calculated using Equation 4.22. Again, since SpamAssassin positives are not TME

Table 5.13: Results of running
SpamAssassin against the TME in the

TS1 data set

Outcome # Emails
True Positives (TP) 5
False Negatives (FN) 39

Total TME 44
False Negative Rate 0.89

false positives, a false positive count of 0 is conservatively used. Table 5.14 shows

the TCR for SpamAssassin against the TS1 data set. The TCR does not change for

increasing λ since there are no false positives. With a false positive count of 0, 1.13 is

the highest TCR SpamAssassin can achieve given its high false negative rate.

Table 5.14: SpamAssassin Total Cost Ratio for TS1 data
set

Outcome # Emails
True Positives (TP) 5
False Negatives (FN) 39
False Positives (FP) 0
True Negatives (TN) 1,457,685

Total Cost Ratio for λ=1,2,10,100 1.13

ClamAV

Table 5.15 contains the results of executing ClamAV against the targeted malicious

emails in the TS1 data set (reference Table 4.6). The false negative rate is calculated

using Equation 4.22. Again, since ClamAV true positives are not TME false positives,
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Table 5.15: Results of running ClamAV against the TME
in the TS1 data set

Outcome # Emails
True Positives (TP) 7
False Negatives (FN) 37

Total TME 44
Total Emails with Attachment 44
False Negative Rate 0.84

a false positive count of 0 is conservatively used. Table 5.16 shows the TCR for

ClamAV against the TS1 data set. The TCR does not change for increasing λ since

there are no false positives. With a false positive count of 0, 1.19 is the highest TCR

ClamAV can achieve given its high false negative rate.

Table 5.16: ClamAV Total Cost Ratio for TS1 data set

Outcome # Emails
True Positives (TP) 7
False Negatives (FN) 37
False Positives (FP) 0
True Negatives (TN) 1,457,685

Total Cost Ratio for λ=1,2,10,100 1.19

SpamAssassin+ClamAV

ClamAV detected the same TME as SpamAssassin plus 2 additional TME. Therefore,

the joint SpamAssassin+ClamAV results are the same as the ClamAV results detailed

in the previous section.

5.3.2 Random forest parameter optimization

Figure 5.5 shows Total Cost Ratio (TCR) graphs for varying number of trees when

using increasing subsets of features for node splitting.

A λ=1 means the cost of a false positive and false negative is the same. However,

as described with the cost sensitive evaluation in Sections 4.5.3 and 4.6.3, λ can be
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Figure 5.5: Total cost ratio optimization for random forest using the TS1 data set
(continued...)
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Figure 5.5: Total cost ratio optimization for random forest using the TS1 data set
(continued...)
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Figure 5.5: Total cost ratio optimization for random forest using the TS1 data set
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increased to change the cost ratio between false negatives and false positives. Assuming

false negative and false positive misclassification costs are equal, the Random Forest

has the highest TCR of 0.36 with k = 100 and m = 1. Assuming false negatives

cost twice as much as false positives, the Random Forest has the highest TCR of

0.69 with k = 100 and m = 1. Assuming false negatives cost ten or one-hundred

times as much as false positives, the Random Forest has the highest TCR of 2.53 and

8.24, respectively, with k = 100 and m = 2. The false negative rate was 0.09. Unless

organizations place a much higher cost on false negatives than false positives then the

random forest classifier at λ = 1 or λ = 2 does not outperform the baseline (e.g. with

no filter present). A random forest with parameters k = 100 and m = 2 will be used

for comparison purposes when analyzing the TS1 data set. The full data for random

forest parameter optimization for the TS1 data set is available in Appendix D.1.

5.3.3 Cost sensitive learning

Table 5.17 shows the results of processing the TS1 data set through a random forest

classifier using the parameters optimized in the previous section (k = 100, m = 2).

Several executions are done, each time with a different false negative, false positive cost

ratio (λ) for the learning process. Evaluation is still done considering the cost difference

between false negatives and false positives. The full data for cost sensitive learning for

the TS1 data set is available in Appendix D.2. Summary data is shown in Table 5.17.

Making false negatives twice the cost of false positives in the learning process did not

Table 5.17: Summary of cost sensitive learning for the
TS1 data set with k = 100, m = 2

cost ratio TCR, λ = 1 TCR, λ = 2 TCR, λ = 10 TCR, λ = 100
λ = 1 0.32 0.62 2.53 8.24
λ = 2 0.32 0.62 2.53 8.24
λ = 10 0.13 0.26 1.18 6.01
λ = 100 0.00 0.00 0.02 0.22

change the overall total cost ratio (TCR) and no additional false negatives or false

positives were generated. Increasing the false negative to false positive cost ratio to

λ = 10 generated more false positives without reducing false negatives. This resulted
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in a lower TCR. Finally, with false negatives costing one-hundred times false positives,

only 2 false negatives were generated (half of the false negatives of the previous three

cost ratios). However, this came at a cost of 19,419 false positives (1.3%). Keeping

the cost of false negatives and false positives the same yielded the most acceptable

results. While a λ = 100 only generates 2 false negatives, there are a high number of

false positives that could lead to analyst desensitization.

5.3.4 Comparing false negative rates between two detection methods

Section 4.3.3 described how to compare if two detection methods differ significantly

in ability to detect targeted malicious email. Table 5.18 shows the contingency table

for the random forest based classifer developed in this study against SpamAssassin.

This table summarizes the TME detection ability difference between the two methods.

Using Equation 4.17 the χ2 test statistic is 33.03 which is greater than the critical

Table 5.18: TS1 : Contingency Table for TME detection
between Random Forest and SpamAssassin

RF-Correct RF-Error
SpamAssassin-Correct 5 0
SpamAssassin-Error 35 4

value of 6.635 at the α = 0.01 level of significance. This means the null hypothesis that

the two detection methods are the same in the ability to detect targeted malicious

email is rejected. Table 5.19 shows the contingency table for Random Forest vs.

ClamAV (which is the same as Random Forest vs. SpamAssassin+ClamAV). The χ2

Table 5.19: TS1 : Contingency Table for TME detection
between Random Forest and

ClamAV/SpamAssassin+ClamAV

RF-Correct RF-Error
ClamAV-Correct 7 0
ClamAV-Error 33 4

test statistic is 31.03 which is greater than the critical value of 6.635 at the α = 0.01
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level of significance. This means the null hypothesis that the two detection methods

are the same in the ability to detect targeted malicious email is rejected.

In summary, the random forest classifier with persistent threat and recipient

oriented features outperformed conventional techniques such as SpamAssassin and

ClamAV. The random forest classifier was able to achieve a false negative rate of 9.1%

with a negligible 0.009% false positive rate.
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Chapter 6: Summary

The purpose of this study was to develop classification methods, using persistent threat

and recipient oriented features, designed to detect targeted malicious email (TME).

Additionally, the study aimed to demonstrate that incorporating these features results

in a detection capability that is superior to conventional email filtering techniques.

The background provided context to the problem of targeted malicious email. First,

the nature and caliber of threat actors behind targeted malicious email was charac-

terized. Examples were provided from other research studies and also congressional

testimony. Second, numerous examples of targeted malicious email documented in

open-source material were reviewed. These examples came from journalists, govern-

ment security reporting, reports to the United States Congress, and security vendors.

This review characterized TME as: capable of evading conventional detection tech-

niques; specifically crafted with a high degree of recipient relevance; low in volume;

laced with a malicious attachment or link; and, used for acquisition of sensitive

information.

A email primer was then provided containing foundational background on the

inner-workings of email. A threat kill chain was then decomposed to demonstrate the

importance of persistent threat and recipient oriented features to detecting the tactics,

techniques, procedures and infrastructure of individual and institutional threat actors.

A comprehensive literature review was conducted to examine the current state of email

filtering research. The vast majority of email filtering research today is focused on the

detection of spam. The current filtering techniques were categorized into five classes:

authentication, contextual, characterization, reputation and resource consumption.

The weaknesses of these approaches were also assessed.

Next, the goals and hypotheses of this study were outlined. A summary of the

data used in this study was provided. This data included emails as well as other

data sources used for feature generation. Next, the statistical techniques used to

analyze the data and results were described. These techniques included inference for

proportions, inference based on two independent samples and correlation analysis
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techniques. All formulas for test statistic and confidence interval calculation were

provided. Next, a thorough review of threat specific and recipient oriented features

was provided. For each category of features, comparisons were made between targeted

malicious email and non-targeted malicious email. For attachments, TME showed a

much higher density than NTME. More specifically, .doc, .pdf, and .ppt file types

were more prevalent in TME than NTME. TME had significantly more empty Cc

headers and significantly more Cc addresses not addressed to the recipient’s company.

Base64, Big5 and GB2312 character encodings were more prevalent in TME than

NTME. Date header analysis showed a higher proportion of the “+0200”, “-0700”,

“+0800” and “+0900” timezones in TME and a higher proportion of the “-0500”,

“-0600”, and “-0800” timezones in NTME. DomainKeys Identified Mail (DKIM) is still

a relatively new Internet standard but showed a higher proportion in NTME than

TME. On average, the size of TME was greater than the size of NTME, presumably

due to the higher density of attachments in TME which contribute to the increased

email size. Analysis of the envelope recipients revealed several interesting trends.

First, there was a positive correlation between the number of Google search hits for

a particular email address and the average amount of TME received by that email

address. Second, comparing the distribution of TME, NTME and spam across the job

titles in the company revealed those job titles which receive the most amount of TME.

The difference in proportions was shown to be significant with Business Development,

Program Management and Communication; these were the job titles which received

the highest proportion of TME when compared to NTME. Third, an analysis of TME

across business areas revealed four business areas that had a significantly greater

average number of recipients than as compared to NTME. Finally, TME was shown

to have a greater number of valid envelope recipients, invalid envelope recipients, total

envelope recipients and average job level (where a higher job level equates to greater

seniority in the company) than NTME. From headers showed a greater proportion of

gmail, .gov, and yahoo domains in TME than NTME. There was a greater proportion

of aol, hotmail and .mil domains in NTME than TME. TME also showed a greater

proportion of “.gov”, “.mil”, and the company’s domain name in the From header
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phrase than NTME. Not surprisingly, NTME had a greater proportion of emails

appearing to be from email list servers than TME. Analyzing hyperlinks showed a

greater proportion of links to .exe and .htm files in NTME than TME and a greater

proportion of links to .zip files in TME than NTME. The Message-ID field showed a

greater proportion of the string “[t: redacted]” in TME than NTME and the MIME

boundary beginning with “2rfk” was more prevalent in TME than NTME. Analyzing

received lines also revealed the strings “[s: redacted]” and “[v: redacted]” to be more

present in TME than NTME. The Reply-To header was more prevalent in NTME

than TME but a Reply-To address to a Gmail, Hotmail or Yahoo! address was more

prevalent in TME than NTME. In TME, the To header was proportionally more empty

than in NTME. The X-Forwarded-To header was more prevalent in NTME than TME.

Finally, analysis of the X-Mailer header showed a greater proportion of X-Mailer

values of “aspnet”, “blat”, “dreammail”, “extreme mail”,“foxmail”, “ghostmail”, and

“outlook express” in TME than NTME.

Next, a description of the software created and used in this study was provided.

The Random Forest algorithm was introduced as the classifier used in the study

and a cost sensitive model was developed. Unlike spam where false positives usually

have a greater cost than false negatives, with TME, false negatives have a much

greater cost than false positives. False positives were modeled as more acceptable

given the high impact of TME. Comparisons were drawn between detection-only and

blocking scenarios. Next, feature importance measures were shown that can be used

to determine the most important features for classification. A set of measures for

classifier performance was outlined which formed the basis of the comparison between

conventional techniques and the new techniques in this study for detecting TME.

To evaluate the performance of the newly developed persistent threat and recipient

aware classifier, first the most important features were enumerated. Calculation of

feature importance was done using the mean decrease in Gini index. Next a joint data

set of TME and NTME (data set NTME1-TME1 ) was analyzed using conventional

email techniques, SpamAssassin and ClamAV. SpamAssassin had a false negative rate

of 0.73 and ClamAV had a false negative rate of 0.79. A joint SpamAssassin+ClamAV
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detection method yielded a 0.67 false negative rate. Optimizing the random forest

parameters yielded optimum performance using a forest with 50 trees selecting 30

features randomly for splitting at each node in the tree. This yielded a false negative

rate of 0.006. Implementing cost sensitivity in the learning phase resulted in a

reduction of false negatives but also an increase in false positives. Organizations would

have to decide how many false positives they are willing to tolerate to increase false

negative detection performance. Next, the random forest classifier was executed with

successively fewer features, by importance, to determine its false negative degradation

characteristics. More than 20 features had to be removed from the random forest

classifier before the false negative performance was equal to SpamAssassin+ClamAV.

This increased performance was confirmed using a McNemar test that demonstrated

that with a α = 0.01 level of significance, the difference between a random forest

classifier and the conventional email filtering techniques was significant. As another

measure to characterize the differences between the techniques developed in this

study and conventional email filtering techniques, a separate test set was used to

evaluate the classifiers. Data set TS1 was not presented to the classifier in any form

(cross-validation or otherwise) and was only used for testing after a classifier trained

on the joint NTME1-TME1 data set. On the TS1 data set, SpamAssassin had a false

negative rate of 0.89 while ClamAV had a false negative rate of 0.84. Optimizing

the random forest classifier yielded the best performance using a forest of 100 trees

selecting 2 features randomly for splitting at each node in the tree. This yielded a

false negative rate of 0.091. Incorporating cost sensitivity in the learning process

did reduce false negatives but generated a high number of false positives that could

result in analyst desensitization. Finally, a McNemar test showed that random forest

classifier had a superior false negative rate as compared to SpamAssassin, ClamAV or

a joint SpamAssassin+ClamAV.

For future research, feature extraction can be extended to further phases of the kill

chain such as file attachment metadata. In the weaponization stage of an attack (see

Figure 2.3), threat actors may inadvertently leave remnants of information such as file

paths on the system used to create an exploit, locale information such as time zone
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or even author name. The Adobe Portable Document Format (PDF) has metadata

fields for author, date with time zone and even the file path of where the file resides.

All of these features might associate multiple targeted malicious emails into a related

campaign. From a recipient standpoint, features characterizing the types and amounts

of email received by a particular email address can be developed. For example, for

each recipient, the number of emails and attachments received over a fixed time period

might help uncover emails which fall outside the recipient’s normal email receiving

patterns. Recipient oriented features can also be extended to include other facets

of an individual’s behavior: countries visited, conferences attended, or even military

status. Finally, for emails with links, features could be developed to indicate whether

the domain of the link has ever been visited. Domain creation related information

such as age can be extracted and incorporated as features. Aside from extending the

features available for use in classification, a multi-class model can be developed. There

may be many valid campaigns of attack email each with different characteristics. If

different threat actors are behind different campaigns, then features can be mapped to

these different threat actors and aligned to a different class outcome for the purposes

of classification.

Section 3.2 outlined three hypotheses for this study:

H1 Targeted malicious email demonstrates association to persistent threat features of

email such as locale and tools as compared to non-targeted malicious email that

does not show an association to persistent threat features.

H2 Targeted malicious email demonstrates association to recipient oriented features

such as role, reputation, relationships and access as compared to non-targeted

malicious email that does not show an association to recipient oriented features.

H3 Detection of targeted malicious email using persistent threat and recipient oriented

features results in fewer false negatives than detection of targeted malicious email

using conventional email filtering techniques.

All three of these hypotheses were confirmed in this study.
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In summary, this research established targeted malicious email (TME) as a separate

class of email that was not previously researched in the academic literature. New

detection methods were created based on persistent threat and recipient oriented

features. It was shown that persistent threat features are necessary for detecting

targeted malicious email. Further, recipient oriented features such as the average

number of TME received, the average Google search count and the average job level

were in the top twenty features relevant to separating TME from NTME.

Targeted Malicious Email (TME) presents a great risk for those organizations

plagued by it. The impact of sensitive data loss can be severe not only to a company

but also to a country. The techniques developed in this study can be used to increase

the ability of organizations to detect TME over conventional techniques.
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Appendix A: Google Search Hits

Table A.1 is a breakdown of the number of targeted malicious emails received by

email addresses in the company with a certain number of Google search hits.

Table A.1: Detailed List of Extracted Email Features

Google hits Num Email Addresses Cum % Avg TME Received

0 132604 95.290% 0.0074

1 4279 98.365% 0.1687

2 1299 99.299% 0.5050

3 448 99.621% 0.6228

4 157 99.733% 0.7261

5 37 99.760% 0.4595

6 37 99.787% 0.7027

7 33 99.810% 1.0606

8 40 99.839% 0.6500

9 30 99.861% 0.8333

10 11 99.868% 1.5455

11 15 99.879% 0.7333

12 10 99.886% 1.2000

13 7 99.891% 1.1429

14 10 99.899% 1.9000

15 10 99.906% 0.1000

16 6 99.910% 0.8333

17 3 99.912% 1.6667

18 7 99.917% 2.0000

19 9 99.924% 1.0000

20 6 99.928% 0.8333

21 3 99.930% 2.3330

2 2 99.932% 0.5000

23 3 99.934% 2.6667

Continued on next page. . .
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Table A.1 – Continued

Google hits Num Email Addresses Cum % Avg TME Received

24 4 99.937% 1.5000

25 5 99.940% 1.0000

26 4 99.943% 1.5000

27 2 99.945% 0.0000

28 2 99.946% 0.0000

29 4 99.949% 0.5000

30 3 99.951% 0.3000

31 1 99.952% 0.0000

32 3 99.954% 2.0000

33 3 99.956% 0.6667

34 1 99.957% 0.0000

36 3 99.959% 0.3330

37 2 99.960% 0.5000

38 3 99.963% 2.6667

39 1 99.963% 0.0000

40 1 99.964% 1.0000

43 1 99.965% 0.0000

44 1 99.966% 0.0000

46 2 99.967% 1.5000

47 2 99.968% 3.0000

48 4 99.971% 2.0000

49 1 99.972% 2.0000

51 1 99.973% 2.0000

53 1 99.973% 2.0000

55 3 99.976% 0.6667

57 1 99.976% 1.0000

58 1 99.977% 4.0000

61 2 99.978% 2.5000

64 1 99.979% 2.0000

Continued on next page. . .
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Table A.1 – Continued

Google hits Num Email Addresses Cum % Avg TME Received

66 1 99.980% 2.0000

69 2 99.981% 1.5000

70 1 99.982% 1.0000

80 1 99.983% 0.0000

81 1 99.983% 0.0000

84 1 99.984% 7.0000

85 1 99.985% 0.0000

93 2 99.986% 2.0000

95 1 99.987% 2.0000

104 1 99.988% 1.0000

108 1 99.989% 2.0000

113 1 99.989% 5.0000

126 1 99.990% 2.0000

134 1 99.991% 0.0000

135 1 99.991% 0.0000

141 1 99.992% 4.0000

145 1 99.993% 1.0000

149 1 99.994% 1.0000

158 1 99.994% 5.0000

179 1 99.995% 1.0000

190 1 99.996% 0.0000

194 1 99.996% 4.0000

205 1 99.997% 0.0000

250 1 99.998% 5.0000

311 1 99.999% 1.0000

510 1 99.999% 2.0000

672 1 100.000% 1.0000
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Appendix B: Random Forest Details

The Random Forest algorithm (Breiman, 2001; Hastie et al., 2008) is as follows:

1. Parameters: k = number of trees to create; m = number of random features to

select for node splitting, d = maximum depth of the trees (in this study, trees

are grown to maximum size).

2. Select k vectors from the training data such that vector θk is chosen

independent of θ1, ..., θk−1. This is known as bootstrap sampling.

3. For each of the bootstrap samples grow a tree, Tk, where each node is split

using the best split from m randomly selected features. The result is multiple

tree classifiers Tk : h(x, θk) where x is an input vector of unknown classification.

4. To classify x, process that feature vector down each tree in the forest. Each tree

will output a classification, also known as a vote. If Ck(x) represents the

classification of the kth tree in the forest, then the aggregate classification of

the forest, Cforest(x) = majority vote {Ck(x)}k1.
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Appendix C: Evaluation Data for the NTME1-TME1 data set

C.1 Random forest parameter optimization for the NTME1-TME1 data set

Table C.1 shows detailed results for executing the random forest classifier against the NTME1-TME1 data set. The best

performing random forest configurations for various false negative, false positive cost ratios (λ) are highlighted.

Table C.1: Random forest parameter optimization for the NTME1-TME1 data set

k m TP TN FP FN TPR TNR FPR FNR Wacc Werr TCR, λ = 1 TCR, λ = 2 TCR, λ = 10 TCR, λ = 100

10 7 2280 20884 10 35 0.985 1.000 0.000 0.015 0.998 0.002 51.44 57.88 64.31 65.95

10 15 2287 20884 10 28 0.988 1.000 0.000 0.012 0.998 0.002 60.92 70.15 79.83 82.38

10 20 2291 20887 7 24 0.990 1.000 0.000 0.010 0.999 0.001 74.68 84.18 93.72 96.18

10 30 2288 20879 15 27 0.988 0.999 0.001 0.012 0.998 0.002 55.12 67.10 81.23 85.27

10 40 2295 20877 17 20 0.991 0.999 0.001 0.009 0.998 0.002 62.57 81.23 106.68 114.77

10 50 2291 20871 23 24 0.990 0.999 0.001 0.010 0.998 0.002 49.26 65.21 88.02 95.54

10 60 2293 20865 29 22 0.990 0.999 0.001 0.010 0.998 0.002 45.39 63.42 92.97 103.86

10 70 2296 20861 33 19 0.992 0.998 0.002 0.008 0.998 0.002 44.52 65.21 103.81 119.76

10 80 2293 20861 33 22 0.990 0.998 0.002 0.010 0.998 0.002 42.09 60.13 91.50 103.67

30 7 2292 20887 7 23 0.990 1.000 0.000 0.010 0.999 0.001 77.17 87.36 97.68 100.35

30 15 2294 20886 8 21 0.991 1.000 0.000 0.009 0.999 0.001 79.83 92.60 106.19 109.82

30 20 2298 20882 12 17 0.993 0.999 0.001 0.007 0.999 0.001 79.83 100.65 127.20 135.22

30 30 2295 20877 17 20 0.991 0.999 0.001 0.009 0.998 0.002 62.57 81.23 106.68 114.77

30 40 2297 20876 18 18 0.992 0.999 0.001 0.008 0.998 0.002 64.31 85.74 116.92 127.34

30 50 2294 20868 26 21 0.991 0.999 0.001 0.009 0.998 0.002 49.26 68.09 98.09 108.89

30 60 2294 20867 27 21 0.991 0.999 0.001 0.009 0.998 0.002 48.23 67.10 97.68 108.84

30 70 2295 20863 31 20 0.991 0.999 0.001 0.009 0.998 0.002 45.39 65.21 100.22 113.98

30 80 2295 20862 32 20 0.991 0.998 0.002 0.009 0.998 0.002 44.52 64.31 99.78 113.93

Continued on next page. . .
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Table C.1 – Continued

k m TP TN FP FN TPR TNR FPR FNR Wacc Werr TCR, λ = 1 TCR, λ = 2 TCR, λ = 10 TCR, λ = 100

50 7 2293 20889 5 22 0.990 1.000 0.000 0.010 0.999 0.001 85.74 94.49 102.89 104.99

50 15 2294 20885 9 21 0.991 1.000 0.000 0.009 0.999 0.001 77.17 90.78 105.71 109.77

50 20 2298 20884 10 17 0.993 1.000 0.000 0.007 0.999 0.001 85.74 105.23 128.61 135.38

50 30 2300 20880 14 15 0.994 0.999 0.001 0.006 0.999 0.001 79.83 105.23 141.16 152.91

50 40 2296 20877 17 19 0.992 0.999 0.001 0.008 0.998 0.002 64.31 84.18 111.84 120.76

50 50 2296 20872 22 19 0.992 0.999 0.001 0.008 0.998 0.002 56.46 77.17 109.20 120.45

50 60 2296 20867 27 19 0.992 0.999 0.001 0.008 0.998 0.002 50.33 71.23 106.68 120.13

50 70 2294 20862 32 21 0.991 0.998 0.002 0.009 0.998 0.002 43.68 62.57 95.66 108.58

50 80 2297 20862 32 18 0.992 0.998 0.002 0.008 0.998 0.002 46.30 68.09 109.20 126.36

100 7 2289 20887 7 26 0.989 1.000 0.000 0.011 0.999 0.001 70.15 78.47 86.70 88.80

100 15 2295 20886 8 20 0.991 1.000 0.000 0.009 0.999 0.001 82.68 96.46 111.30 115.29

100 20 2297 20883 11 18 0.992 0.999 0.001 0.008 0.999 0.001 79.83 98.51 121.20 127.83

100 30 2297 20878 16 18 0.992 0.999 0.001 0.008 0.999 0.001 68.09 89.04 118.11 127.48

100 40 2297 20880 14 18 0.992 0.999 0.001 0.008 0.999 0.001 72.34 92.60 119.33 127.62

100 50 2296 20873 21 19 0.992 0.999 0.001 0.008 0.998 0.002 57.88 78.47 109.72 120.51

100 60 2297 20866 28 18 0.992 0.999 0.001 0.008 0.998 0.002 50.33 72.34 111.30 126.64

100 70 2295 20864 30 20 0.991 0.999 0.001 0.009 0.998 0.002 46.30 66.14 100.65 114.04

100 80 2297 20862 32 18 0.992 0.998 0.002 0.008 0.998 0.002 46.30 68.09 109.20 126.36

250 7 2290 20888 6 25 0.989 1.000 0.000 0.011 0.999 0.001 74.68 82.68 90.43 92.38

250 15 2293 20889 5 22 0.990 1.000 0.000 0.010 0.999 0.001 85.74 94.49 102.89 104.99

250 20 2296 20885 9 19 0.992 1.000 0.000 0.008 0.999 0.001 82.68 98.51 116.33 121.27

250 30 2295 20881 13 20 0.991 0.999 0.001 0.009 0.999 0.001 70.15 87.36 108.69 115.00

250 40 2297 20877 17 18 0.992 0.999 0.001 0.008 0.998 0.002 66.14 87.36 117.51 127.41

250 50 2297 20871 23 18 0.992 0.999 0.001 0.008 0.998 0.002 56.46 78.47 114.04 126.99

250 60 2298 20864 20 17 0.993 0.999 0.001 0.007 0.998 0.002 62.57 85.74 121.84 134.59

250 70 2296 20863 31 19 0.992 0.999 0.001 0.008 0.998 0.002 46.30 67.10 104.75 119.89

250 80 2296 20858 36 19 0.992 0.998 0.002 0.008 0.998 0.002 42.09 62.57 102.43 119.58

Continued on next page. . .
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Table C.1 – Continued

k m TP TN FP FN TPR TNR FPR FNR Wacc Werr TCR, λ = 1 TCR, λ = 2 TCR, λ = 10 TCR, λ = 100

500 7 2291 20890 4 24 0.990 1.000 0.000 0.010 0.999 0.001 82.68 89.04 94.88 96.30

500 15 2295 20889 5 20 0.991 1.000 0.000 0.009 0.999 0.001 92.60 102.89 112.93 115.46

500 20 2296 20887 7 19 0.992 1.000 0.000 0.008 0.999 0.001 89.04 102.89 117.51 121.39

500 30 2296 20881 13 19 0.992 0.999 0.001 0.008 0.999 0.001 72.34 90.78 114.04 121.01

500 40 2297 20878 16 18 0.992 0.999 0.001 0.008 0.999 0.001 68.09 89.04 118.11 127.48

500 50 2297 20871 23 18 0.992 0.999 0.001 0.008 0.998 0.002 56.46 78.47 114.04 126.99

500 60 2298 20864 30 17 0.993 0.999 0.001 0.007 0.998 0.002 49.26 72.34 115.75 133.82

500 70 2298 20863 31 17 0.993 0.999 0.001 0.007 0.998 0.002 48.23 71.23 115.17 133.74

500 80 2298 20859 35 17 0.993 0.998 0.002 0.007 0.998 0.002 44.52 67.10 112.93 133.43

C.2 Cost sensitive learning for the NTME1-TME1 data set

Table C.2 shows detailed results for executing the random forest classifier against the NTME1-TME1 data set with various

values for λ.

Table C.2: Cost sensitive learning for the NTME1-TME1
data set with k = 50, m = 30

cost TP TN FP FN TPR TNR FPR FNR Wacc Werr TCR, λ = 1 TCR, λ = 2 TCR, λ = 10 TCR, λ = 100
λ = 1 2300 20880 14 15 0.9935 0.9993 0.0007 0.0065 0.998750 0.001250 79.83 105.23 141.16 152.91
λ = 2 2299 20875 19 16 0.9931 0.9991 0.0009 0.0069 0.998492 0.001508 66.14 90.78 129.33 142.99
λ = 10 2303 20858 36 12 0.9948 0.9983 0.0017 0.0052 0.997932 0.002068 48.23 77.17 148.40 187.30
λ = 100 2311 20629 265 4 0.9983 0.9873 0.0127 0.0017 0.988410 0.011590 8.61 16.96 75.90 348.12
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C.3 Feature reduction for the NTME1-TME1 data set - Removing Most Important Features

Table C.3 shows detailed results for executing the random forest classifier against the NTME1-TME1 data set with successively

fewer features (removing the most important features first).

C.4 Feature reduction for the NTME1-TME1 data set - Removing Least Important Features

Table C.4 shows detailed results for executing the random forest classifier against the NTME1-TME1 data set with successively

fewer features (removing the least important features first).
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Table C.3: Feature reduction for the NTME1-TME1
data set with k = 50, m = 30

F TP TN FP FN TPR TNR FPR FNR Wacc Werr TCR, λ = 1 TCR, λ = 2 TCR, λ = 10 TCR, λ = 100
1 2267 20877 17 48 0.9793 0.9992 0.0008 0.0207 0.997199 0.002801 35.62 40.97 46.58 48.06
2 2263 20867 27 52 0.9775 0.9987 0.0013 0.0225 0.996596 0.003404 29.30 35.34 42.32 44.29
3 2256 20877 17 59 0.9745 0.9992 0.0008 0.0255 0.996725 0.003275 30.46 34.30 38.14 39.12
4 2205 20811 83 110 0.9525 0.9960 0.0040 0.0475 0.991684 0.008316 11.99 15.28 19.57 20.89
5 2200 20815 79 115 0.9503 0.9962 0.0038 0.0497 0.991641 0.008359 11.93 14.98 18.84 19.99
6 2173 20787 107 142 0.9387 0.9949 0.0051 0.0613 0.989271 0.010729 9.30 11.84 15.16 16.18
7 2130 20730 164 185 0.9201 0.9922 0.0078 0.0799 0.984963 0.015037 6.63 8.67 11.49 12.40
8 1963 20695 199 352 0.8479 0.9905 0.0095 0.1521 0.976259 0.023741 4.20 5.13 6.22 6.54
9 1952 20691 203 363 0.8432 0.9903 0.0097 0.1568 0.975613 0.024387 4.09 4.98 6.04 6.34
10 1926 20675 219 389 0.8320 0.9895 0.0105 0.1680 0.973803 0.026197 3.81 4.64 5.63 5.92
11 1923 20668 226 392 0.8307 0.9892 0.0108 0.1693 0.973372 0.026628 3.75 4.58 5.58 5.87
12 1904 20651 243 411 0.8225 0.9884 0.0116 0.1775 0.971821 0.028179 3.54 4.35 5.32 5.60
13 1607 20578 316 708 0.6942 0.9849 0.0151 0.3058 0.955879 0.044121 2.26 2.67 3.13 3.26
14 1527 20588 306 788 0.6596 0.9854 0.0146 0.3404 0.952863 0.047137 2.12 2.46 2.83 2.93
15 1532 20582 312 783 0.6618 0.9851 0.0149 0.3382 0.952820 0.047180 2.11 2.47 2.84 2.94
16 1229 20696 198 1086 0.5309 0.9905 0.0095 0.4691 0.944677 0.055323 1.80 1.95 2.09 2.13
17 1187 20675 219 1128 0.5127 0.9895 0.0105 0.4873 0.941962 0.058038 1.72 1.87 2.01 2.05
18 1169 20678 216 1146 0.5050 0.9897 0.0103 0.4950 0.941316 0.058684 1.70 1.85 1.98 2.02
19 1151 20673 221 1164 0.4972 0.9894 0.0106 0.5028 0.940325 0.059675 1.67 1.82 1.95 1.99
20 1140 20699 195 1175 0.4924 0.9907 0.0093 0.5076 0.940971 0.059029 1.69 1.82 1.94 1.97
21 1020 20696 198 1295 0.4406 0.9905 0.0095 0.5594 0.935672 0.064328 1.55 1.66 1.76 1.78
22 712 20721 173 1603 0.3076 0.9917 0.0083 0.6924 0.923478 0.076522 1.30 1.37 1.43 1.44
23 663 20746 148 1652 0.2864 0.9929 0.0071 0.7136 0.922444 0.077556 1.29 1.34 1.39 1.40
24 629 20780 114 1686 0.2717 0.9945 0.0055 0.7283 0.922444 0.077556 1.29 1.33 1.36 1.37
25 616 20783 111 1699 0.2661 0.9947 0.0053 0.7339 0.922013 0.077987 1.28 1.32 1.35 1.36
30 522 20773 121 1793 0.2255 0.9942 0.0058 0.7745 0.917532 0.082468 1.21 1.25 1.28 1.29
40 287 20847 47 2028 0.1240 0.9978 0.0022 0.8760 0.910595 0.089405 1.12 1.13 1.14 1.14
50 225 20854 40 2090 0.0972 0.9981 0.0019 0.9028 0.908225 0.091775 1.09 1.10 1.11 1.11
60 67 20884 10 2248 0.0289 0.9995 0.0005 0.9711 0.902710 0.097290 1.03 1.03 1.03 1.03
70 20 20894 0 2295 0.0086 1.0000 0.0000 0.9914 0.901116 0.098884 1.01 1.01 1.01 1.01
80 0 20894 0 2315 0.0000 1.0000 0.0000 1.0000 0.900254 0.099746 1.00 1.00 1.00 1.00
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Table C.4: Feature reduction for the NTME1-TME1
data set with k = 50, m = 30

F TP TN FP FN TPR TNR FPR FNR Wacc Werr TCR, λ = 1 TCR, λ = 2 TCR, λ = 10 TCR, λ = 100
83 2300 20880 14 15 0.9935 0.9993 0.0007 0.0065 0.998750 0.001250 79.83 105.23 141.16 152.91
70 2294 20877 17 21 0.9909 0.9992 0.0008 0.0091 0.998363 0.001637 60.92 78.47 101.98 109.35
60 2296 20876 18 19 0.9918 0.9991 0.0009 0.0082 0.998406 0.001594 62.57 82.68 111.30 120.70
50 2296 20872 22 19 0.9918 0.9989 0.0011 0.0082 0.998233 0.001767 56.46 77.17 109.20 120.45
40 2295 20864 30 20 0.9914 0.9986 0.0014 0.0086 0.997846 0.002154 46.30 66.14 100.65 114.04
30 2296 20862 32 19 0.9918 0.9985 0.0015 0.0082 0.997803 0.002197 45.39 66.14 104.28 119.82
20 2291 20857 37 24 0.9896 0.9982 0.0018 0.0104 0.997372 0.002628 37.95 54.47 83.57 94.99
10 2288 20862 32 27 0.9883 0.9985 0.0015 0.0117 0.997458 0.002542 39.24 53.84 76.66 84.74
5 2279 20849 45 36 0.9844 0.9978 0.0022 0.0156 0.996510 0.003490 28.58 39.57 57.16 63.51
4 2279 20849 45 36 0.9844 0.9978 0.0022 0.0156 0.996510 0.003490 28.58 39.57 57.16 63.51
3 2277 20852 42 38 0.9836 0.9980 0.0020 0.0164 0.996553 0.003447 28.94 39.24 54.86 60.26
2 2094 20788 106 221 0.9045 0.9949 0.0051 0.0955 0.985911 0.014089 7.08 8.45 10.00 10.43
1 1629 20764 130 686 0.7037 0.9938 0.0062 0.2963 0.964841 0.035159 2.84 3.08 3.31 3.37
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Appendix D: Evaluation Data for the TS1 data set

D.1 Random forest parameter optimization for the TS1 data set

Table D.1 shows detailed results for executing the random forest classifier against the TS1 data set. The best performing

random forest configurations for various false negative, false positive cost ratios (λ) are highlighted.

Table D.1: Random forest parameter optimization for the TS1 data set

k m TP TN FP FN TPR TNR FPR FNR Wacc Werr TCR, λ = 1 TCR, λ = 2 TCR, λ = 10 TCR, λ = 100

10 1 36 1457446 239 8 0.818 1.000 0.000 0.182 1.000 0.000 0.18 0.35 1.38 4.23

10 2 32 1457426 259 12 0.727 1.000 0.000 0.273 1.000 0.000 0.16 0.31 1.16 3.02

10 3 34 1457531 154 10 0.773 1.000 0.000 0.227 1.000 0.000 0.27 0.51 1.73 3.81

10 5 34 1457444 241 10 0.773 1.000 0.000 0.227 1.000 0.000 0.18 0.34 1.29 3.55

10 10 33 1457302 383 11 0.750 1.000 0.000 0.250 1.000 0.000 0.11 0.22 0.89 2.97

10 15 28 1457401 284 16 0.636 1.000 0.000 0.364 1.000 0.000 0.15 0.28 0.99 2.34

10 20 33 1456921 764 11 0.750 0.999 0.001 0.250 0.999 0.001 0.06 0.11 0.50 2.36

10 30 26 1457134 551 18 0.591 1.000 0.000 0.409 1.000 0.000 0.08 0.15 0.60 1.87

30 1 35 1457533 152 9 0.795 1.000 0.000 0.205 1.000 0.000 0.27 0.52 1.82 4.18

30 2 40 1457528 157 4 0.909 1.000 0.000 0.091 1.000 0.000 0.27 0.53 2.23 7.90

30 3 38 1457529 156 6 0.864 1.000 0.000 0.136 1.000 0.000 0.27 0.52 2.04 5.82

30 5 39 1457490 195 5 0.886 1.000 0.000 0.114 1.000 0.000 0.22 0.43 1.80 6.33

30 10 33 1457350 335 11 0.750 1.000 0.000 0.250 1.000 0.000 0.13 0.25 0.99 3.07

30 15 32 1457302 383 12 0.727 1.000 0.000 0.273 1.000 0.000 0.11 0.22 0.87 2.78

30 20 31 1457213 472 13 0.705 1.000 0.000 0.295 1.000 0.000 0.09 0.18 0.73 2.48

30 30 26 1456947 738 18 0.591 0.999 0.001 0.409 0.999 0.001 0.06 0.11 0.48 1.73

50 1 36 1457534 151 8 0.818 1.000 0.000 0.182 1.000 0.000 0.28 0.53 1.90 4.63

50 2 40 1457517 168 4 0.909 1.000 0.000 0.091 1.000 0.000 0.26 0.50 2.12 7.75

Continued on next page. . .
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Table D.1 – Continued

k m TP TN FP FN TPR TNR FPR FNR Wacc Werr TCR, λ = 1 TCR, λ = 2 TCR, λ = 10 TCR, λ = 100

50 3 40 1457516 169 4 0.909 1.000 0.000 0.091 1.000 0.000 0.25 0.50 2.11 7.73

50 5 38 1457484 201 6 0.864 1.000 0.000 0.136 1.000 0.000 0.21 0.41 1.69 5.49

50 10 31 1457324 361 13 0.705 1.000 0.000 0.295 1.000 0.000 0.12 0.23 0.90 2.65

50 15 33 1457297 388 11 0.750 1.000 0.000 0.250 1.000 0.000 0.11 0.21 0.88 2.96

50 20 31 1457065 620 13 0.705 1.000 0.000 0.295 1.000 0.000 0.07 0.14 0.59 2.29

50 30 26 1456827 858 18 0.591 0.999 0.001 0.409 0.999 0.001 0.05 0.10 0.42 1.66

100 1 38 1457570 115 6 0.864 1.000 0.000 0.136 1.000 0.000 0.36 0.69 2.51 6.15

100 2 40 1457551 134 4 0.909 1.000 0.000 0.091 1.000 0.000 0.32 0.62 2.53 8.24

100 3 38 1457523 162 6 0.864 1.000 0.000 0.136 1.000 0.000 0.26 0.51 1.98 5.77

100 5 32 1457469 216 12 0.727 1.000 0.000 0.273 1.000 0.000 0.19 0.37 1.31 3.11

100 10 31 1457364 321 13 0.705 1.000 0.000 0.295 1.000 0.000 0.13 0.25 0.98 2.71

100 15 31 1457301 384 13 0.705 1.000 0.000 0.295 1.000 0.000 0.11 0.21 0.86 2.61

100 20 31 1457215 470 13 0.705 1.000 0.000 0.295 1.000 0.000 0.09 0.18 0.73 2.49

100 30 26 1456876 809 18 0.591 0.999 0.001 0.409 0.999 0.001 0.05 0.10 0.44 1.69

250 1 38 1457567 118 6 0.864 1.000 0.000 0.136 1.000 0.000 0.35 0.68 2.47 6.13

250 2 39 1457544 141 5 0.886 1.000 0.000 0.114 1.000 0.000 0.30 0.58 2.30 6.86

250 3 39 1457531 154 5 0.886 1.000 0.000 0.114 1.000 0.000 0.28 0.54 2.16 6.73

250 5 31 1457483 202 13 0.705 1.000 0.000 0.295 1.000 0.000 0.20 0.39 1.33 2.93

250 10 31 1457373 312 13 0.705 1.000 0.000 0.295 1.000 0.000 0.14 0.26 1.00 2.73

250 15 31 1457321 364 13 0.705 1.000 0.000 0.295 1.000 0.000 0.12 0.23 0.89 2.64

250 20 31 1457201 484 13 0.705 1.000 0.000 0.295 1.000 0.000 0.09 0.17 0.72 2.47

250 30 26 1456943 742 18 0.591 0.999 0.001 0.409 0.999 0.001 0.06 0.11 0.48 1.73

500 1 37 1457569 116 7 0.841 1.000 0.000 0.159 1.000 0.000 0.36 0.68 2.37 5.39

500 2 38 1457550 135 6 0.864 1.000 0.000 0.136 1.000 0.000 0.31 0.60 2.26 5.99

500 3 39 1457531 154 5 0.886 1.000 0.000 0.114 1.000 0.000 0.28 0.54 2.16 6.73

500 5 33 1457476 209 11 0.750 1.000 0.000 0.250 1.000 0.000 0.20 0.38 1.38 3.36

500 10 30 1457393 292 14 0.682 1.000 0.000 0.318 1.000 0.000 0.14 0.28 1.02 2.60

Continued on next page. . .
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Table D.1 – Continued

k m TP TN FP FN TPR TNR FPR FNR Wacc Werr TCR, λ = 1 TCR, λ = 2 TCR, λ = 10 TCR, λ = 100

500 15 31 1457327 358 13 0.705 1.000 0.000 0.295 1.000 0.000 0.12 0.23 0.90 2.65

500 20 31 1457208 477 13 0.705 1.000 0.000 0.295 1.000 0.000 0.09 0.17 0.72 2.48

500 30 26 1456966 719 18 0.591 1.000 0.000 0.409 0.999 0.001 0.06 0.12 0.49 1.75
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D.2 Cost sensitive learning for the TS1 data set

Table D.2 shows detailed results for executing the random forest classifier against the TS1 data set with various values for λ.

Table D.2: Cost sensitive learning for the TS1 data set
with k = 100, m = 2

cost TP TN FP FN TPR TNR FPR FNR Wacc Werr TCR, λ = 1 TCR, λ = 2 TCR, λ = 10 TCR, λ = 100
λ = 1 40 1457551 134 4 0.909 1.000 0.000 0.091 1.000 0.000 0.32 0.62 2.53 8.24
λ = 2 40 1457551 134 4 0.909 1.000 0.000 0.091 1.000 0.000 0.32 0.62 2.53 8.24
λ = 10 40 1457353 332 4 0.909 1.000 0.000 0.091 1.000 0.000 0.13 0.26 1.18 6.01
λ = 100 42 1438266 19419 2 0.955 0.987 0.013 0.045 0.987 0.013 0.00 0.00 0.02 0.22

165


	Dedication
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Statement of the Problem
	1.2 Outline of Dissertation
	1.3 Background
	1.4 Purpose
	1.5 Significance
	1.6 Scope and Limitations

	2 Literature Review
	2.1 Email format primer
	2.2 Threat actor spectrum and the threat kill chain
	2.2.1 Threat actor spectrum
	2.2.2 Threat kill chain

	2.3 Current email filtering techniques
	2.3.1 Authentication
	2.3.2 Contextual
	2.3.3 Characterization
	2.3.4 Reputation
	2.3.5 Resource Consumption

	2.4 Existing weaknesses

	3 Research Goals and Hypotheses
	3.1 Research Goals
	3.2 Hypotheses

	4 Research Method
	4.1 Data
	4.1.1 Data use approvals
	4.1.2 Data sets created and used

	4.2 Software and Database
	4.2.1 Software
	4.2.2 Database

	4.3 Statistical methods
	4.3.1 Inference for proportions
	4.3.2 Inferences Based on Two Samples
	4.3.3 McNemar test for comparing classifiers
	4.3.4 Correlation Analysis

	4.4 Email analysis procedures
	4.4.1 Persistent threat features
	4.4.2 Recipient Oriented Features
	4.4.3 Detailed List of Features
	4.4.4 Explanation of Features
	4.4.5 Summary of feature differences
	4.4.6 Features to Vectors

	4.5 Classification
	4.5.1 Random Forests
	4.5.2 Types of Error
	4.5.3 Cost Sensitive Learning and Classification
	4.5.4 Feature Importance and Cost
	4.5.5 Practical implementation

	4.6 Evaluation
	4.6.1 Conventional Techniques
	4.6.2 Parameter Optimization
	4.6.3 Measuring Classifier Performance
	4.6.4 Summary of Analysis Procedures


	5 Evaluation
	5.1 Feature Importance
	5.2 Random forest classifier against the NTME1-TME1 data set
	5.2.1 Conventional email filtering techniques
	5.2.2 Random forest parameter optimization
	5.2.3 Cost sensitive learning
	5.2.4 Feature reduction
	5.2.5 Comparing false negative rates between two detection methods

	5.3 Random forest classifier against the TS1 data set
	5.3.1 Conventional email filtering techniques
	5.3.2 Random forest parameter optimization
	5.3.3 Cost sensitive learning
	5.3.4 Comparing false negative rates between two detection methods


	6 Summary
	References
	Appendix
	A Google Search Hits
	B Random Forest Details
	C Evaluation Data for the NTME1-TME1 data set
	C.1 Random forest parameter optimization for the NTME1-TME1 data set
	C.2 Cost sensitive learning for the NTME1-TME1 data set
	C.3 Feature reduction for the NTME1-TME1 data set - Removing Most Important Features
	C.4 Feature reduction for the NTME1-TME1 data set - Removing Least Important Features

	D Evaluation Data for the TS1 data set
	D.1 Random forest parameter optimization for the TS1 data set
	D.2 Cost sensitive learning for the TS1 data set


